期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合复小波域去噪和PSO-TSVM的群体异常行为检测
被引量:
2
1
作者
胡根生
吴玉林
梁栋
《传感器与微系统》
CSCD
2020年第5期143-147,共5页
为了提高群体异常行为检测准确率,减少异常检测中噪声带来的影响,给出一种结合复小波域去噪和粒子群优化孪生支持向量机(PSO-TSVM)的群体异常行为检测算法。通过Horn-Schunck光流法提取视频中群体行为的速度、加速度、方向特征和人群密...
为了提高群体异常行为检测准确率,减少异常检测中噪声带来的影响,给出一种结合复小波域去噪和粒子群优化孪生支持向量机(PSO-TSVM)的群体异常行为检测算法。通过Horn-Schunck光流法提取视频中群体行为的速度、加速度、方向特征和人群密度特征;利用非抽样对偶树复小波包变换和双变量模型对抽取的群体行为特征进行噪声去除;使用去噪后的群体行为特征训练和测试经粒子群算法优化的孪生支持向量机模型,实现视频中的群体异常行为检测。在UMN视频数据集和自建数据集上的实验结果表明:相较于社会力模型和粒子熵模型等方法,所提算法具有更高的检测准确率。
展开更多
关键词
群体异常行为检测
非抽样对偶树复小波包变换
双变量模型
粒子群优化-孪生支持向量机
在线阅读
下载PDF
职称材料
题名
结合复小波域去噪和PSO-TSVM的群体异常行为检测
被引量:
2
1
作者
胡根生
吴玉林
梁栋
机构
安徽大学电子信息工程学院
偏振光成像探测技术安徽省重点实验室
出处
《传感器与微系统》
CSCD
2020年第5期143-147,共5页
基金
国家自然科学基金资助项目(61672032)
偏振光成像探测技术安徽省重点实验室开放项目(2016-KFKT-003)。
文摘
为了提高群体异常行为检测准确率,减少异常检测中噪声带来的影响,给出一种结合复小波域去噪和粒子群优化孪生支持向量机(PSO-TSVM)的群体异常行为检测算法。通过Horn-Schunck光流法提取视频中群体行为的速度、加速度、方向特征和人群密度特征;利用非抽样对偶树复小波包变换和双变量模型对抽取的群体行为特征进行噪声去除;使用去噪后的群体行为特征训练和测试经粒子群算法优化的孪生支持向量机模型,实现视频中的群体异常行为检测。在UMN视频数据集和自建数据集上的实验结果表明:相较于社会力模型和粒子熵模型等方法,所提算法具有更高的检测准确率。
关键词
群体异常行为检测
非抽样对偶树复小波包变换
双变量模型
粒子群优化-孪生支持向量机
Keywords
abnormal group activity detection
non-subsampled dual-tree complex wavelet packet transform
bivariate model
PSO-TSVM
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合复小波域去噪和PSO-TSVM的群体异常行为检测
胡根生
吴玉林
梁栋
《传感器与微系统》
CSCD
2020
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部