期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于概率信息不完备的群决策模型 被引量:1
1
作者 戴意瑜 陈江 《计算机应用》 CSCD 北大核心 2018年第10期2822-2826,2975,共6页
针对犹豫模糊元中元素发生的概率信息不完备的群决策问题,提出一种基于最优化模型和一致性调整算法的群决策模型。该模型首先引入了概率不完备犹豫模糊偏好关系(PIHFPR)、概率不完备犹豫模糊偏好关系的期望一致性以及概率不完备犹豫模... 针对犹豫模糊元中元素发生的概率信息不完备的群决策问题,提出一种基于最优化模型和一致性调整算法的群决策模型。该模型首先引入了概率不完备犹豫模糊偏好关系(PIHFPR)、概率不完备犹豫模糊偏好关系的期望一致性以及概率不完备犹豫模糊偏好关系的满意加性期望一致性等概念;其次,以PIHFPR和排序权重向量间的偏差最小化作为目标函数,构建线性最优化模型计算得到PIHFPR中不完备的概率信息;随后,通过提出的加权概率不完备犹豫模糊偏好关系集成算子确定综合的PIHFPR,同时设计一种群体一致性调整算法,不仅使得调整后的PIHFPR具有满意加性期望一致性,还可以计算方案的排序权重。最后,将群决策模型应用于区块链的选择实例中。实验结果表明,决策结果合理可靠,且更能反映实际决策情况。 展开更多
关键词 概率不完备信息 犹豫模糊偏好关系 群决策模型 期望一致性 群体一致性调整算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部