Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and...Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.展开更多
The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange mem...The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.展开更多
基金Project(20070410304) supported by Postdoctoral Foundation of ChinaProject(07JJ3105) supported by Hunan Provincial Natural Science Foundation of China
文摘Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.
基金Project(51272289) supported by the National Natural Science Foundation of China
文摘The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.