期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于置信学习互导框架的小样本条件下森林扰动类型遥感分类
1
作者 严燕 吴伶 +2 位作者 李军集 赵于鑫 叶昕 《空间科学学报》 北大核心 2025年第2期397-412,共16页
遥感技术作为地球系统和空间信息科学研究的核心手段,提高了人类对地球系统变化的理解,而开展地表重要组成部分——森林生态系统的扰动监测与分类研究可更精准高效.但受限于样本标注繁重和变化稀疏限制标注数量.本研究提出基于置信学习... 遥感技术作为地球系统和空间信息科学研究的核心手段,提高了人类对地球系统变化的理解,而开展地表重要组成部分——森林生态系统的扰动监测与分类研究可更精准高效.但受限于样本标注繁重和变化稀疏限制标注数量.本研究提出基于置信学习互导框架的小样本条件下森林扰动类型分类方法.利用2000-2021年Landsat数据与连续变化检测与分类(Continuous Change Detection and Classification,CCDC)算法检测森林扰动获得大量未标注数据,结合少量样本及基于随机森林(Random Forest,RF)和梯度提升(Categorical Boosting,CatBoost)分类器构建的互导框架,以迭代方式通过置信学习从未标注数据中筛选高置信度数据,扩充对方标注样本集,互相指导分类,进而提升分类精度.结果表明,该方法总体分类精度达91.4%,较单一分类器提升5%,在小样本条件下表现出优异性能,为森林扰动类型分类研究提供了高效、可靠的解决方案. 展开更多
关键词 小样本 置信学习 互导框架 森林扰动分类
在线阅读 下载PDF
CLGLF:置信学习引导标签融合的多模态命名实体识别方法
2
作者 王海荣 王彤 +2 位作者 徐玺 荆博祥 陈芳萍 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2429-2437,共9页
为解决多模态命名实体识别中存在的视觉语义理解和多模态语义的偏差问题,本文提出了置信学习引导标签融合的多模态命名实体识别方法 .该方法调用BLIP-2预训练模型生成图像描述,将其与输入的文本拼接,进行图文联合编码实现多模态特征融合... 为解决多模态命名实体识别中存在的视觉语义理解和多模态语义的偏差问题,本文提出了置信学习引导标签融合的多模态命名实体识别方法 .该方法调用BLIP-2预训练模型生成图像描述,将其与输入的文本拼接,进行图文联合编码实现多模态特征融合,对多模态表征和文本表征解码后得到候选标签和文本标签;在采用KL散度损失函数对齐两组标签的基础上,计算置信分数用来评估多模态表征质量,设置置信阈值辅助筛选出有偏差的候选标签,并使用相应位置的文本标签替换有偏差的候选标签,实现标签的融合,最终完成多模态命名实体识别.为了验证本文方法,在Twitter-2015和Twitter-2017多模态数据集上进行实验,并将实验结果与MSB、UMT等7种主流方法进行对比,实验结果证明了本文方法的有效性. 展开更多
关键词 多模态命名实体识别 图像描述 置信学习 多模态语义偏差 信息抽取
在线阅读 下载PDF
基于置信学习机与近红外光谱的煤种快速分类方法 被引量:4
3
作者 王雅圣 杨梦 +3 位作者 骆志远 王酉 李光 胡瑞芬 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第6期1685-1689,共5页
基于近红外光漫反射谱技术的检测分析具有简单,快捷,安全等优势而被广泛应用于各行各业。应用近红外光谱分析技术实现不同煤种的快速分类,该方法可以替代费时费力费财的传统化学分析方法。同时首次将置信学习机(confidence machine)引... 基于近红外光漫反射谱技术的检测分析具有简单,快捷,安全等优势而被广泛应用于各行各业。应用近红外光谱分析技术实现不同煤种的快速分类,该方法可以替代费时费力费财的传统化学分析方法。同时首次将置信学习机(confidence machine)引入近红外分析中,实现了对分析结果的风险评估。采集了来自不同矿区共四种不同煤种(肥煤,焦煤,瘦煤和贫瘦煤)的199个煤样本的近红外光谱,通过机器学习的方法针对煤的近红外光谱构建了煤种分类器来实现煤种的快速分类。在近红外分析中引入了置信学习机的分析方式,结合支持向量机(SVM),构建了离线和在线的CM-SVM分类器。置信学习机是一种概率方法,使用概率(CM-SVM)来取代分类超平面(SVM)进行分类,不仅分类效果好于传统的SVM,达到了95.48%的分类率,还能同时给出每个样本分类结果的置信度,可靠度等风险信息。另外,CM-SVM通过对置信水平的设定,得到不同置信度下预测区间,该区间的预测正确率是与置信水平严格对应的,对于产品质量控制有非常重要的意义。置信学习机同时是一种在线的学习模型,新样本的不断加入会提高模型的性能,非常适合于工业现场的在线分析。在线的CM-SVM模型随着样本数的增加,预测结果的置信度有所提高,对工业现场近红外分析有重要意义。 展开更多
关键词 近红外光谱 煤种分类 置信学习 支持向量机
在线阅读 下载PDF
基于算法随机性理论和奇异描述的置信学习机器 被引量:10
4
作者 邱德红 陈传波 金先级 《计算机研究与发展》 EI CSCD 北大核心 2004年第9期1586-1592,共7页
根据Kolmogorov算法随机性理论 ,为学习机器建立了一种置信机制 ,描述了置信学习机器的算法 论证了通过样本奇异描述函数定义的可计算的样本序列随机性描述函数与Kolmogorov算法随机性理论中定义的 ,不可计算的序列随机性描述函数具有... 根据Kolmogorov算法随机性理论 ,为学习机器建立了一种置信机制 ,描述了置信学习机器的算法 论证了通过样本奇异描述函数定义的可计算的样本序列随机性描述函数与Kolmogorov算法随机性理论中定义的 ,不可计算的序列随机性描述函数具有相同的意义 分别从样本空间距离、样本对分类边界的支持力度和样本应变大小 3个不同的角度设计了样本奇异描述函数 ,利用它们实现了置信学习机器算法 展开更多
关键词 置信机器学习 算法随机性理论 奇异性描述
在线阅读 下载PDF
融合深度置信网络与与核极限学习机算法的核磁共振测井储层渗透率预测方法 被引量:16
5
作者 朱林奇 张冲 +3 位作者 周雪晴 魏旸 黄雨阳 高齐明 《计算机应用》 CSCD 北大核心 2017年第10期3034-3038,共5页
由于低孔低渗储层孔隙结构较为复杂,现有核磁共振(NMR)测井渗透率模型对于低孔低渗储层预测精度不高。为此,提出一种融合深度置信网络(DBN)算法与核极限学习机(KELM)算法的渗透率预测方法。该方法首先对DBN模型进行预训练,然后将KELM模... 由于低孔低渗储层孔隙结构较为复杂,现有核磁共振(NMR)测井渗透率模型对于低孔低渗储层预测精度不高。为此,提出一种融合深度置信网络(DBN)算法与核极限学习机(KELM)算法的渗透率预测方法。该方法首先对DBN模型进行预训练,然后将KELM模型作为预测器放置在训练好DBN模型后,利用训练数据进行有监督的训练,最终形成深度置信-核极限学习机(DBKELMN)模型。考虑到该模型需充分利用反映孔隙结构的横向弛豫时间谱信息,将离散化后的核磁共振测井横向弛豫时间谱作为输入,渗透率作为输出,确定NMR测井横向弛豫时间谱与渗透率的函数关系,并基于该函数关系对储层渗透率进行预测。实例应用表明,融合DBN算法与KELM算法的渗透率预测方法是有效的,预测样本的平均绝对误差(MAE)较斯伦贝谢道尔研究中心(SDR)模型降低了0.34。融合DBN算法与KELM算法的渗透率预测方法可提高低孔渗储层渗透率预测精度,可应用于油气田勘探开发。 展开更多
关键词 深度学习 核磁共振测井 渗透率 深度置信网络 深度置信-核极限学习
在线阅读 下载PDF
基于反绎学习的裁判文书量刑情节识别 被引量:3
6
作者 李锦烨 黄瑞章 +2 位作者 秦永彬 陈艳平 田小瑜 《计算机应用》 CSCD 北大核心 2022年第6期1802-1807,共6页
针对司法领域标记数据匮乏、标注质量不高、存在强逻辑性导致裁判文书量刑情节识别效果不佳的问题,提出一种基于反绎学习的量刑情节识别模型ABL-CON。首先结合神经网络与领域逻辑推理,通过半监督学习方法,使用置信学习方法表征情节识别... 针对司法领域标记数据匮乏、标注质量不高、存在强逻辑性导致裁判文书量刑情节识别效果不佳的问题,提出一种基于反绎学习的量刑情节识别模型ABL-CON。首先结合神经网络与领域逻辑推理,通过半监督学习方法,使用置信学习方法表征情节识别置信度;然后修正无标签数据经过神经网络产生的不合逻辑的错误情节,重新训练识别模型,以提高识别精度。在自构建的司法数据集上的实验结果表明,使用50%标注数据与50%无标注数据的ABL-CON模型在Macro_F1值和Micro_F1值上分别达到了90.35%和90.58%,优于同样条件下的BERT和SS-ABL,也超越了使用100%标注数据的BERT模型。ABL-CON模型通过逻辑反绎修正不符合逻辑的标签能够有效提高标签的逻辑合理性以及标签的识别能力。 展开更多
关键词 量刑情节识别 半监督学习 多标签分类 反绎学习 置信学习
在线阅读 下载PDF
算法随机性置信支持向量机及其签名认证 被引量:4
7
作者 邱德红 陈传波 金先级 《小型微型计算机系统》 CSCD 北大核心 2004年第12期2131-2134,共4页
根据 Kolmogorov算法随机性理论 ,描述定义了具有置信判别能力的置信学习机器 .利用普通支持向量学习机器中的 L agrangian系数 ,从系数基本的物理内涵出发 ,近似实现了 Kolmogorov算法随机性理论定义的普适不可计算的随机性描述函数 .... 根据 Kolmogorov算法随机性理论 ,描述定义了具有置信判别能力的置信学习机器 .利用普通支持向量学习机器中的 L agrangian系数 ,从系数基本的物理内涵出发 ,近似实现了 Kolmogorov算法随机性理论定义的普适不可计算的随机性描述函数 .并由此定义了学习的置信度 ,使得支持向量学习机在学习判断对象类别的同时能够给出该次判断的可信程度 ,丰富了学习机器的输出信息 .将置信支持向量机用于认证手写签名的特征向量 。 展开更多
关键词 算法随机性 置信机器学习 支持向量机 签名认证
在线阅读 下载PDF
基于行车风险场的高速公路交织区车辆轨迹预测方法 被引量:1
8
作者 秦雅琴 董帅 +3 位作者 谢济铭 陈亮 刘拥华 郭淼 《汽车安全与节能学报》 CSCD 北大核心 2024年第6期952-961,共10页
为提高交织区车辆轨迹预测精度,该文提出了一种融合行车风险场和车辆换道意图的车辆轨迹预测方法。分析交织区驾驶人驾驶需求变化,利用行车风险场模型统一表示车辆行驶时的交互风险;采用隐Markov模型识别车辆换道意图;通过深度置信网络... 为提高交织区车辆轨迹预测精度,该文提出了一种融合行车风险场和车辆换道意图的车辆轨迹预测方法。分析交织区驾驶人驾驶需求变化,利用行车风险场模型统一表示车辆行驶时的交互风险;采用隐Markov模型识别车辆换道意图;通过深度置信网络在线学习机(DBN_OSELM)模型对输入特征进行多维度扩展和融合,提高交织区轨迹预测的准确率;最后,基于CitySim数据集对所提方法进行评估。结果表明:模型能以较高的准确率预测高速公路交织区的车辆轨迹,交织区驾驶人3类驾驶需求(汇入、保持、驶出)的车辆轨迹预测均方根误差(RMSE)分别为0.6835、0.2574、0.6315,平均位移误差(ADE)分别为0.46、0.21、0.48 m。该研究成果有助于提高复杂场景下的车辆轨迹预测精度,改善交织区的交通安全。 展开更多
关键词 智能交通 驾驶需求 行车风险场 换道意图 深度置信网络在线学习机(DBN_OSELM)模型 轨迹预测
在线阅读 下载PDF
基于DBN-ELM的构网型并网逆变器控制参数自适应调整方法 被引量:1
9
作者 张梦琪 李永刚 +3 位作者 孙庚 吴滨源 刘淇玉 张驰 《电力自动化设备》 EI CSCD 北大核心 2024年第4期111-118,共8页
“双高”电力系统中电网阻抗呈现宽范围时变特性,构网型并网逆变器控制参数缺乏自适应调整能力,存在失稳风险。对此,提出一种基于深度置信网络-极限学习机的构网型并网逆变器控制参数自适应调整方法。建立闭环极点映射模型,利用深层架... “双高”电力系统中电网阻抗呈现宽范围时变特性,构网型并网逆变器控制参数缺乏自适应调整能力,存在失稳风险。对此,提出一种基于深度置信网络-极限学习机的构网型并网逆变器控制参数自适应调整方法。建立闭环极点映射模型,利用深层架构对控制参数与关键极点之间的映射关系进行训练;通过训练好的闭环极点映射模型预测得到相应的关键极点,识别出关键极点最接近参考极点时构网型并网逆变器的控制参数;通过自适应调整控制参数,确保系统在电网阻抗变化时跟踪参考极点,实现自适应稳定控制。理论分析和仿真结果均表明,所提方法能够实现控制参数的自适应调整,有效提高构网型并网逆变器对电网阻抗变化的适应性。 展开更多
关键词 构网型并网逆变器 自适应调整 深度置信网络-极限学习 复矢量建模 电网阻抗
在线阅读 下载PDF
考虑噪声标签影响的驾驶员精神负荷状态评价 被引量:2
10
作者 黄晶 彭扬 +1 位作者 黄烨 彭晓燕 《汽车工程》 EI CSCD 北大核心 2022年第5期771-777,共7页
现有驾驶员精神负荷评价研究多以驾驶场景中有无次任务来给定驾驶员的精神负荷分类标签,但驾驶员在正常驾驶情景下也可能由于陷入自我思维而导致精神负荷的增加;此外,由于个体差异,同一驾驶次任务对不同驾驶员精神负荷的影响也不尽相同... 现有驾驶员精神负荷评价研究多以驾驶场景中有无次任务来给定驾驶员的精神负荷分类标签,但驾驶员在正常驾驶情景下也可能由于陷入自我思维而导致精神负荷的增加;此外,由于个体差异,同一驾驶次任务对不同驾驶员精神负荷的影响也不尽相同。因此,由传统方法所制作的数据集可能存在噪声标签,从而影响精神负荷评价模型的训练效果。针对此类问题,本文中采用置信学习的方法对驾驶员的精神负荷分类标签进行检测和滤除,使用处理过的标签,以脑电、心电和皮电信号特征作为模型输入,基于支持向量机、随机森林、K近邻、决策树、逻辑回归和多层感知机等多种算法构建驾驶员精神负荷模型,对比分析噪声标签处理对提高各类模型性能的效果。结果表明:使用置信学习进行噪声标签处理后,所构建的多种驾驶员精神负荷模型的性能均得到了明显的改善,其中,支持向量机模型的性能提升的效果最佳。 展开更多
关键词 交通安全 精神负荷 置信学习 机器学习 噪声标签
在线阅读 下载PDF
融合抗噪和双重蒸馏的文本分类方法 被引量:3
11
作者 郭伟 黄嘉晖 +1 位作者 侯晨煜 曹斌 《计算机科学》 CSCD 北大核心 2023年第6期251-260,共10页
文本分类是自然语言处理中重要且经典的问题,常被应用于新闻分类、情感分析等场景。目前,基于深度学习的分类方法已经取得了较大的成功,但在实际应用中仍然存在以下3个方面的问题:1)现实生活中的文本数据存在大量的噪声标签,直接用这些... 文本分类是自然语言处理中重要且经典的问题,常被应用于新闻分类、情感分析等场景。目前,基于深度学习的分类方法已经取得了较大的成功,但在实际应用中仍然存在以下3个方面的问题:1)现实生活中的文本数据存在大量的噪声标签,直接用这些数据训练模型会严重影响模型的性能;2)随着预训练模型的提出,模型分类准确率有所提升,但模型的规模和推理计算量也随之提升明显,使得在资源有限的设备上使用预训练模型成为一项挑战;3)预训练模型存在大量的冗余计算,当数据量较大时会导致模型出现预测效率低下的问题。针对上述问题,提出了一个融合抗噪和双重蒸馏(包括知识蒸馏和自蒸馏)的文本分类方法,通过基于置信学习的阈值抗噪方法和一种新的主动学习样例选择算法,以少量的标注成本提升数据的质量。同时,通过知识蒸馏结合自蒸馏的方式,减小了模型规模和冗余计算,进而使其可以根据需求灵活调整推理速度。在真实数据集上进行了大量实验来评估该方法的性能,实验结果表明所提方法在抗噪后准确率提升了1.18%,在较小的精度损失下相比BERT可以加速4~8倍。 展开更多
关键词 噪声标签 置信学习 主动学习 知识蒸馏 自蒸馏
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
12
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部