Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the ...Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.展开更多
为降低基于接收信号强度指示(received signal strength indication,RSSI)测距误差,提出基于RSSI测距修正和集员法的节点定位算法(improved RSSI ranging and set membership based localization,I-RSSI-SM-L),通过修正RSSI测距,利用集...为降低基于接收信号强度指示(received signal strength indication,RSSI)测距误差,提出基于RSSI测距修正和集员法的节点定位算法(improved RSSI ranging and set membership based localization,I-RSSI-SM-L),通过修正RSSI测距,利用集员法估计节点位置,提高定位精度。在测距阶段,估算模型参数,通过测距误差校正测距值,建立置信区间;在定位阶段,通过集员法获取未知节点的位置的粗略范围,通过网格扫描法收缩范围,直至一点,此点位置就是未知节点的位置。实验结果表明,I-RSSI-SM-L算法降低了测距误差,抑制了定位的均方定位误差。展开更多
基金Supported by the National Natural Science Foundation of China(12061017,12361055)the Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(22-A-01-01)。
文摘Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.
文摘为降低基于接收信号强度指示(received signal strength indication,RSSI)测距误差,提出基于RSSI测距修正和集员法的节点定位算法(improved RSSI ranging and set membership based localization,I-RSSI-SM-L),通过修正RSSI测距,利用集员法估计节点位置,提高定位精度。在测距阶段,估算模型参数,通过测距误差校正测距值,建立置信区间;在定位阶段,通过集员法获取未知节点的位置的粗略范围,通过网格扫描法收缩范围,直至一点,此点位置就是未知节点的位置。实验结果表明,I-RSSI-SM-L算法降低了测距误差,抑制了定位的均方定位误差。