Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the ...Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the filtering location, the proposed schemes can be grouped into Victim-end Filtering and Source-end Filtering. The first scheme uses a single filtering router to block the attack flows near the victim, but does not take the factor that the filters are scarce resource into account, which causes the huge loss of legitimate flows; considering each router could contribute a few filters, the other extreme scheme pushes the filtering location back into each attack source so as to obtain ample filters, but this may incur the severe network transmission delay due to the abused filtering routers. Therefore, in this paper, we propose a scalable filter-based packet filtering scheme to balance the number of filtering routers and the available filters. Through emulating DoS scenarios based on the synthetic and real-world Intemet topologies and further implementing the various filter-based packet filtering schemes on them, the results show that our scheme just uses fewer filtering routers to cut off all attack flows while minimizing the loss of legitimate flows.展开更多
In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggrega...In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.展开更多
In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general i...In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general in DTNs composed of the mobile phones or Pads. This paper proposes a novel opportunistic routing protocol, denoted by Large Opporturioty (LAOP), for the energy and buffer constrained DTNs. The objective of LAOP is to reach many receivers of a message with a small number of transmissions. By LAOP, the sender floods a message when the number of its neighbors is not less than a threshold. We compare the delivery performance of LAOP with other four widely used Delay or Disruption Tolerant Network (DTN) routing protocols, Direct Delivery, Epidemic routing, SprayAndWait and PRoPHET and demonstrate that LAOP can improve the delivery performance and decrease the delivery latency simultaneously.展开更多
Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking ...Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.展开更多
In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criter...An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical arch...This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical architectures including the broadcast-and-select based Optical Shared Memory Supercomputer Interconnect System (OSMOSIS) switch, the defection routing based Data Vortex switch and the arrayed waveguide grating based Low-latency Interconnect Optical Network Switch (LIONS) switch are discussed in detail. In particular, we investigate the various Ioopback buffering technologies in LIONS and present a proof of principle testbed demonstration showing feasibility of LIONS architecture. Moreover, the performance of LIONS, Data Vortex and OSMOSIS with traditional state-of-the-art electrical switching network based on the Flattened-ButterFly (FBF) architecture in terms of throughput and latency are compared. The sinmlation based perfortmnce study shows that the latency of LIONS is almost independent of the number of input ports and does not saturate even at very high input load.展开更多
Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening...Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening (LPL).For reliable delivery of each packet with LPL,the sender has to transmit a preamble that is long enough to span over a complete sleep interval of the receiver.In this way,the sensor nodes avoid idle listening,however,at the cost of remarkably increased end-to-end delay of multi-hop packet transmissions.To address this issue,in this paper we propose a new duty-cycling mechanism called DC-Gear.DC-Gear exploits a "sleep less but save more" phenomenon,which means increasing the duty cycle in a timely and appropriate manner whileminimizing the overall energy cost and satisfying the end-to-end delay constraint.We have implemented DC-Gear with TelosB motes and demonstrated its performance advantages through extensive experiments.展开更多
A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain,...A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain, which rams out to be a Quasi-Birth-and-Death (QBD) process. Using the Matrix-Ce-ometric method, we can analyze the average delay in a unified way. Theoretical analysis is validated by simu-lation results. We show that the delay performances of Amplify-and-Forward or Decode-and-Forwaxd (AF/ DF) and incremental AF/DF schemes can be analyzed in the unified way. Thus, we can always choose the best cooperative diversity scheme in different scenari-os for delay minimization.展开更多
Today's data center networks are designed using densely interconnected hosts in the data center.There are multiple paths between source host and destination server.Therefore,how to balance traffic is key issue wit...Today's data center networks are designed using densely interconnected hosts in the data center.There are multiple paths between source host and destination server.Therefore,how to balance traffic is key issue with the fast growth of network applications.Although lots of load balancing methods have been proposed,the traditional approaches cannot fully satisfy the requirement of load balancing in data center networks.The main reason is the lack of efficient ways to obtain network traffic statistics from each network device.As a solution,the OpenFlow protocol enables monitoring traffic statistics by a centralized controller.However,existing solutions based on OpenFlow present a difficult dilemma between load balancing and packet reordering.To achieve a balance between load balancing and packet reordering,we propose an OpenFlow based flow slice load balancing algorithm.Through introducing the idea of differentiated service,the scheme classifies Internet flows into two categories:the aggressive and the normal,and applies different splitting granularities to the two classes of flows.This scheme improves the performance of load balancing and also reduces the number of reordering packets.Using the trace-driven simulations,we show that the proposed scheme gains over 50%improvement over previous schemes under the path delay estimation errors,and is a practical and efficient algorithm.展开更多
基金supported by the Doctoral Fund of Northeastern University of Qinhuangdao(No.XNB201410)the Fundamental Research Funds for the Central Universities(No.N130323005)+1 种基金the Natural Science Foundation of Hebei Province of China(No.F2015501122)the Doctoral Scientific Research Foundation of Liaoning Province(No.201501143)
文摘Recently, attacks have become Denial-of-Service (DOS) the mainstream threat to the internet service availability. The filter-based packet filtering is a key technology to defend against such attacks. Relying on the filtering location, the proposed schemes can be grouped into Victim-end Filtering and Source-end Filtering. The first scheme uses a single filtering router to block the attack flows near the victim, but does not take the factor that the filters are scarce resource into account, which causes the huge loss of legitimate flows; considering each router could contribute a few filters, the other extreme scheme pushes the filtering location back into each attack source so as to obtain ample filters, but this may incur the severe network transmission delay due to the abused filtering routers. Therefore, in this paper, we propose a scalable filter-based packet filtering scheme to balance the number of filtering routers and the available filters. Through emulating DoS scenarios based on the synthetic and real-world Intemet topologies and further implementing the various filter-based packet filtering schemes on them, the results show that our scheme just uses fewer filtering routers to cut off all attack flows while minimizing the loss of legitimate flows.
基金This paper was supported by the National Basic Research Pro- gram of China (973 Program) under Crant No. 2011CB302903 the National Natural Science Foundation of China under Crants No. 60873231, No.61272084+3 种基金 the Natural Science Foundation of Jiangsu Province under Ca-ant No. BK2009426 the Innovation Project for Postgraduate Cultivation of Jiangsu Province under Crants No. CXZZ11_0402, No. CX10B195Z, No. CXLX11_0415, No. CXLXll 0416 the Natural Science Research Project of Jiangsu Education Department under Grant No. 09KJD510008 the Natural Science Foundation of the Jiangsu Higher Educa-tion Institutions of China under Grant No. 11KJA520002.
文摘In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.
基金This work was supported by the National Natural Science Foundation of China under Grants No. 61100208, No. 61100205 the Natural Science Foundation of Jiangsu under Grant No. BK2011169. Pietro lio was supported by the EU FP7 project RECOGNITION: Relevance and Cognition for Self-Awareness in a Content-Centric Intemet.
文摘In Delay Tolerant Networks (DTNs), establishing routing path from a source node to a destination node may not be possible, so the opportunistic routings are widely used. The energy and buffer constraints are general in DTNs composed of the mobile phones or Pads. This paper proposes a novel opportunistic routing protocol, denoted by Large Opporturioty (LAOP), for the energy and buffer constrained DTNs. The objective of LAOP is to reach many receivers of a message with a small number of transmissions. By LAOP, the sender floods a message when the number of its neighbors is not less than a threshold. We compare the delivery performance of LAOP with other four widely used Delay or Disruption Tolerant Network (DTN) routing protocols, Direct Delivery, Epidemic routing, SprayAndWait and PRoPHET and demonstrate that LAOP can improve the delivery performance and decrease the delivery latency simultaneously.
基金supported in part by the 973 Program under Grant No.2013CB329100in part by NSFC under Grant No.61422101,62171200,and 62132017+1 种基金in part by the Ph.D. Programs Foundation of MOE of China under Grant No.20130009110014in part by the Fundamental Research Funds for the Central Universities under Grant No.2016JBZ002
文摘Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
文摘An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金the Department of Defense under Contract No.#H88230-08-C-0202the Google Research Awards
文摘This paper reviews the recently developed optical interconnect technologies designed for scalable, low latency and high-throughput comunications within datacenters or high perforrmnce computers. The three typical architectures including the broadcast-and-select based Optical Shared Memory Supercomputer Interconnect System (OSMOSIS) switch, the defection routing based Data Vortex switch and the arrayed waveguide grating based Low-latency Interconnect Optical Network Switch (LIONS) switch are discussed in detail. In particular, we investigate the various Ioopback buffering technologies in LIONS and present a proof of principle testbed demonstration showing feasibility of LIONS architecture. Moreover, the performance of LIONS, Data Vortex and OSMOSIS with traditional state-of-the-art electrical switching network based on the Flattened-ButterFly (FBF) architecture in terms of throughput and latency are compared. The sinmlation based perfortmnce study shows that the latency of LIONS is almost independent of the number of input ports and does not saturate even at very high input load.
基金supported by the National Basic Research Program of China(Grant No.2011CB302705)the National Natural Science Fourdation of China(60970123)
文摘Many Wireless Sensor Network (WSN) systems are deployed in unattended areas using non-rechargeable batteries.To enable sustainable operations,most WSN systems employ duty-cycling mechanisms,such as Low Power Listening (LPL).For reliable delivery of each packet with LPL,the sender has to transmit a preamble that is long enough to span over a complete sleep interval of the receiver.In this way,the sensor nodes avoid idle listening,however,at the cost of remarkably increased end-to-end delay of multi-hop packet transmissions.To address this issue,in this paper we propose a new duty-cycling mechanism called DC-Gear.DC-Gear exploits a "sleep less but save more" phenomenon,which means increasing the duty cycle in a timely and appropriate manner whileminimizing the overall energy cost and satisfying the end-to-end delay constraint.We have implemented DC-Gear with TelosB motes and demonstrated its performance advantages through extensive experiments.
基金This work was supported by the National Basic Research Program of China under Crant No. 2012CB316001 the National Science Foundation of China under Crants No. (:13832008, No. 03902001.
文摘A lot of work has been focused on desig-ning and analyzing various cooperative diversity pro-tocols for wireless relay networks. To provide a uni-fied queuing analytic framework, we fonmlate an em-bedded Markov chain, which rams out to be a Quasi-Birth-and-Death (QBD) process. Using the Matrix-Ce-ometric method, we can analyze the average delay in a unified way. Theoretical analysis is validated by simu-lation results. We show that the delay performances of Amplify-and-Forward or Decode-and-Forwaxd (AF/ DF) and incremental AF/DF schemes can be analyzed in the unified way. Thus, we can always choose the best cooperative diversity scheme in different scenari-os for delay minimization.
基金supported by a grant from the National Basic Research Development Program of China(973 Program)(No.2012CB315901,2012CB315906)the National High Technology Research and Development Program of China(863 Program)(No.2011AA01A103)
文摘Today's data center networks are designed using densely interconnected hosts in the data center.There are multiple paths between source host and destination server.Therefore,how to balance traffic is key issue with the fast growth of network applications.Although lots of load balancing methods have been proposed,the traditional approaches cannot fully satisfy the requirement of load balancing in data center networks.The main reason is the lack of efficient ways to obtain network traffic statistics from each network device.As a solution,the OpenFlow protocol enables monitoring traffic statistics by a centralized controller.However,existing solutions based on OpenFlow present a difficult dilemma between load balancing and packet reordering.To achieve a balance between load balancing and packet reordering,we propose an OpenFlow based flow slice load balancing algorithm.Through introducing the idea of differentiated service,the scheme classifies Internet flows into two categories:the aggressive and the normal,and applies different splitting granularities to the two classes of flows.This scheme improves the performance of load balancing and also reduces the number of reordering packets.Using the trace-driven simulations,we show that the proposed scheme gains over 50%improvement over previous schemes under the path delay estimation errors,and is a practical and efficient algorithm.