文章提出一种基于XGBoost算法的自适应网络切换方法,优化工业物联网(Industrial Internet of Things,IIoT)环境中Wi-Fi与5G网络的切换效率。通过XGBoost模型深度学习历史网络性能数据和环境参数,智能预测最优网络切换时机和目标网络类...文章提出一种基于XGBoost算法的自适应网络切换方法,优化工业物联网(Industrial Internet of Things,IIoT)环境中Wi-Fi与5G网络的切换效率。通过XGBoost模型深度学习历史网络性能数据和环境参数,智能预测最优网络切换时机和目标网络类型。该方法实现了动态网络选择,并结合动态缓存系统利用历史数据优化决策,提高了切换效率和响应速度。引入的回滚检查机制确保在网络性能下降或切换失败时能够迅速恢复到稳定状态,保障通信质量。实验评估表明,该方法在切换成功率、平均延迟和系统开销方面表现优异,为提高IIoT设备的通信性能提供了有效解决方案。展开更多
文摘针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的故障诊断性能。首先,利用ResNeXt残差网络从源域和目标域充分提取可迁移特征;然后,引入局部最大平均差异(local maximum mean difference,LMMD)准则,以两个源域的子域为基础对齐目标域中相关子域,减少相关子域间和全局域间的分布差异;最后,利用美国凯斯西储大学轴承数据集和MFS机械综合故障试验台产生的真实的轴承振动数据集,对所提方法进行了试验验证。结果表明,该方法在多工况下的平均故障诊断精度高达99.76%。与现有代表性方法相比,所提方法具有更好的故障诊断效果。
文摘文章提出一种基于XGBoost算法的自适应网络切换方法,优化工业物联网(Industrial Internet of Things,IIoT)环境中Wi-Fi与5G网络的切换效率。通过XGBoost模型深度学习历史网络性能数据和环境参数,智能预测最优网络切换时机和目标网络类型。该方法实现了动态网络选择,并结合动态缓存系统利用历史数据优化决策,提高了切换效率和响应速度。引入的回滚检查机制确保在网络性能下降或切换失败时能够迅速恢复到稳定状态,保障通信质量。实验评估表明,该方法在切换成功率、平均延迟和系统开销方面表现优异,为提高IIoT设备的通信性能提供了有效解决方案。