期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于信号组结构体的CAN信号封装及解析设计
1
作者 马建辉 慕永云 胡代荣 《电子测量技术》 2018年第17期110-113,共4页
在CAN节点的开发中,提取解析CAN信号和赋值封装CAN信号是一个繁重且易出错的工作,传统的位操作方式无法应对需要读取和赋值的CAN信号多达数十个甚至上百个的情形,为了简单有效地提取和封装CAN信号,根据CAN网络矩阵表定义的信号、位置和... 在CAN节点的开发中,提取解析CAN信号和赋值封装CAN信号是一个繁重且易出错的工作,传统的位操作方式无法应对需要读取和赋值的CAN信号多达数十个甚至上百个的情形,为了简单有效地提取和封装CAN信号,根据CAN网络矩阵表定义的信号、位置和长度信息设计相应报文的信号组结构体,然后以信号组结构体和字节数组为成员变量设计相应报文的联合体,信号组结构体存储信号组形式的报文数据,字节数组存储字节形式的报文数据,将信号组结构体和字节数组通过联合体的方式分配到同一个地址空间上,方便地实现了CAN报文接收对应的底层通信以及上层应用中的CAN信号提取和封装。 展开更多
关键词 CAN信号 信号组结构体 网络矩阵表 联合体
在线阅读 下载PDF
Tri-party deep network representation learning using inductive matrix completion 被引量:4
2
作者 YE Zhong-lin ZHAO Hai-xing +2 位作者 ZHANG Ke ZHU Yu XIAO Yu-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2746-2758,共13页
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha... Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches. 展开更多
关键词 network representation network embedding representation learning matrix-forestindex inductive matrix completion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部