期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
拆分降尺度卷积神经网络入侵检测方法
被引量:
8
1
作者
关生
周延森
《科学技术与工程》
北大核心
2022年第36期16108-16115,共8页
针对卷积神经网络(convolutional neural network,CNN)模型待训参数量过大、多层网络导致特征和梯度消失等问题,提出一种基于拆分层和Inception-ResNet的卷积神经网络模型用于入侵检测。首先将网络流量数据转化为具有空间相关性的图像...
针对卷积神经网络(convolutional neural network,CNN)模型待训参数量过大、多层网络导致特征和梯度消失等问题,提出一种基于拆分层和Inception-ResNet的卷积神经网络模型用于入侵检测。首先将网络流量数据转化为具有空间相关性的图像以适用于卷积神经网络的输入;然后使用Inception-ResNet卷积层增加网络深度,减少模型训练参数数量以及消除梯度消失问题,拆分层在降低图像尺度时基本保持图像原有分类特征;最后采用NSL-KDD数据集对改进模型进行训练和测试。测试结果表明:改进模型相对于Inception-ResNet模型具有更高的检测准确率和少数类样本召回率以及更好的训练时间性能。
展开更多
关键词
入侵检测
网络流量编码
Inception-ResNet
降尺度层
训练效率
特征损失
在线阅读
下载PDF
职称材料
题名
拆分降尺度卷积神经网络入侵检测方法
被引量:
8
1
作者
关生
周延森
机构
国际关系学院网络空间安全学院
出处
《科学技术与工程》
北大核心
2022年第36期16108-16115,共8页
基金
国际关系学院国家安全高精尖学科建设科研专项(2019GA38)。
文摘
针对卷积神经网络(convolutional neural network,CNN)模型待训参数量过大、多层网络导致特征和梯度消失等问题,提出一种基于拆分层和Inception-ResNet的卷积神经网络模型用于入侵检测。首先将网络流量数据转化为具有空间相关性的图像以适用于卷积神经网络的输入;然后使用Inception-ResNet卷积层增加网络深度,减少模型训练参数数量以及消除梯度消失问题,拆分层在降低图像尺度时基本保持图像原有分类特征;最后采用NSL-KDD数据集对改进模型进行训练和测试。测试结果表明:改进模型相对于Inception-ResNet模型具有更高的检测准确率和少数类样本召回率以及更好的训练时间性能。
关键词
入侵检测
网络流量编码
Inception-ResNet
降尺度层
训练效率
特征损失
Keywords
intrusion detection
encoding of network traffic
Inception-ResNet
grid size reduction layer
training efficiency
feature loss
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
拆分降尺度卷积神经网络入侵检测方法
关生
周延森
《科学技术与工程》
北大核心
2022
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部