As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural...A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.展开更多
Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the sig...Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.展开更多
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金Project(51075289) supported by the National Natural Science Foundation of ChinaProject(20122014) supported by the Doctor Foundation of Taiyuan University of Science and Technology,China
文摘A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.