期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RMFKAN:基于改进图Mamba的网络水军检测方法
1
作者 王宇哲 颜靖华 +3 位作者 卜凡亮 王一帆 李嘉 韩竹轩 《计算机科学与探索》 北大核心 2025年第5期1365-1378,共14页
网络水军检测任务对构建和谐网络空间至关重要。针对现有基于图Transformer的网络水军检测方法无差别传递来自社区的节点之间的信息,从而导致节点表示过于同质,在处理长距离依赖关系时存在过度压缩和过度平滑,最终降低网络水军检测效果... 网络水军检测任务对构建和谐网络空间至关重要。针对现有基于图Transformer的网络水军检测方法无差别传递来自社区的节点之间的信息,从而导致节点表示过于同质,在处理长距离依赖关系时存在过度压缩和过度平滑,最终降低网络水军检测效果的问题,提出了一种基于关系双向图Mamba的傅里叶Kolmogorov-Arnold网络(RMFKAN)模型用于检测社交平台中的网络水军。通过异质感知的长距离关系特征提取方法解决了大规模社交网络跨社区长距离关系特征丢失的问题。通过引入双向选择状态空间模型(Bi-Mamba)解决了处理长距离依赖关系时的过度压缩和过度平滑问题。具体而言,通过随机游走策略令牌化子图,输入消息传递神经网络独立处理不同类型的边,利用傅里叶系数改进的KAN增强特征,将特征矩阵输入Bi-Mamba,提高对长距离依赖关系的捕捉能力,同时有效降低训练复杂度。在两个公开的网络水军检测数据集Twibot-20和Twibot-22上与10个基线模型进行对比实验,实验结果表明,RMFKAN在多个评价指标上均优于现有的基线方法,与现有研究的最佳效果相比RMFKAN的F1分数分别提高了2.10和4.06个百分点,准确率分别提高了1.01和4.45个百分点,验证了其在网络水军检测任务中的优越性能。 展开更多
关键词 网络水军检测 图神经网络 随机游走 Mamba
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部