A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies ...Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies can no longer achieve satisfactory results. A positive guidance technology for public opinion diffusion is urgently needed. First, based on the analysis of influence network controllability and public opinion diffusion, a positive guidance technology is proposed and a new model that supports external control is established. Second, in combination with the influence network, a public opinion propagation influence network model is designed and a public opinion control point selection algorithm(POCDNSA) is proposed. Finally, An experiment verified that this algorithm can lead to users receiving the correct guidance quickly and accurately, reducing the impact of false public opinion information; the effect of CELF is no better than that of the POCDNSA algorithm. The main reason is that the former is completely based on the diffusion cascade information contained in the training data, but does not consider the specific situation of the network structure and the diffusion of public opinion information in the closed set. thus, the effectiveness and feasibility of the algorithm is proven. The findings of this article therefore provide useful insights for the implementation of public opinion control.展开更多
In wireless sensor networks,node localization is a fundamental middleware service.In this paper,a robust and accurate localization algorithm is proposed,which uses a novel iterative clustering model to obtain the most...In wireless sensor networks,node localization is a fundamental middleware service.In this paper,a robust and accurate localization algorithm is proposed,which uses a novel iterative clustering model to obtain the most representative intersection points between every two circles and use them to estimate the position of unknown nodes.Simulation results demonstrate that the proposed algorithm outperforms other localization schemes (such as Min-Max,etc.) in accuracy,scalability and gross error tolerance.展开更多
Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respe...Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.展开更多
Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, ...Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, optimization and integration. A prominent application is a viral marketing campaign which aims to use a small number of targeted infl uence users to initiate cascades of infl uence that create a global increase in product adoption. In this paper, we analyze mainly evaluation methods of user infl uence based on IDM evaluation model, Page Rank evaluation model, use behavior model and some other popular influence evaluation models in currently social network. And then, we extract the core idea of these models to build our influence evaluation model from two aspects, relationship and activity. Finally, the proposed approach was validated on real world datasets,and the result of experiments shows that our method is both effective and stable.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze...A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
基金sponsored by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LC2016024Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044 and 16KJB510024
文摘Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies can no longer achieve satisfactory results. A positive guidance technology for public opinion diffusion is urgently needed. First, based on the analysis of influence network controllability and public opinion diffusion, a positive guidance technology is proposed and a new model that supports external control is established. Second, in combination with the influence network, a public opinion propagation influence network model is designed and a public opinion control point selection algorithm(POCDNSA) is proposed. Finally, An experiment verified that this algorithm can lead to users receiving the correct guidance quickly and accurately, reducing the impact of false public opinion information; the effect of CELF is no better than that of the POCDNSA algorithm. The main reason is that the former is completely based on the diffusion cascade information contained in the training data, but does not consider the specific situation of the network structure and the diffusion of public opinion information in the closed set. thus, the effectiveness and feasibility of the algorithm is proven. The findings of this article therefore provide useful insights for the implementation of public opinion control.
基金supported in part by the Key Program of National Natural Science Foundation of China(Grant No.60873244,60973110,61003307)the Beijing Municipal Natural Science Foundation(Grant No.4102059)
文摘In wireless sensor networks,node localization is a fundamental middleware service.In this paper,a robust and accurate localization algorithm is proposed,which uses a novel iterative clustering model to obtain the most representative intersection points between every two circles and use them to estimate the position of unknown nodes.Simulation results demonstrate that the proposed algorithm outperforms other localization schemes (such as Min-Max,etc.) in accuracy,scalability and gross error tolerance.
基金supported in part by the fundamental key research project of Shanghai Municipal Science and Technology Commission under grant 12JC1404201the Ministry of Education Research Fund-China Mobile(2012) MCM20121032
文摘Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.
基金supported by the Research Fund for the Doctoral Program(New Teachers)Ministry of Education of China under Grant No.20121103120032+2 种基金Humanity and Social Science Youth foundation of Ministry of Education of China under Grant No.13YJCZH065General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012Open Research Fund of Beijing Key Laboratory of Trusted Computing,Open Research Fund of Key Laboratory of Trustworthy Distributed Computing and Service(BUPT),Ministry of Education
文摘Online social networks have gradually permeated into every aspect of people's life.As a research hotspot in social network, user influence is of theoretical and practical significant for information transmission, optimization and integration. A prominent application is a viral marketing campaign which aims to use a small number of targeted infl uence users to initiate cascades of infl uence that create a global increase in product adoption. In this paper, we analyze mainly evaluation methods of user infl uence based on IDM evaluation model, Page Rank evaluation model, use behavior model and some other popular influence evaluation models in currently social network. And then, we extract the core idea of these models to build our influence evaluation model from two aspects, relationship and activity. Finally, the proposed approach was validated on real world datasets,and the result of experiments shows that our method is both effective and stable.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
基金Funded by the National Natural Science Foundation of China (No.59838300 No.59778021)
文摘A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.