针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和...针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和双向短时记忆条件随机场(DCNN-BiLSTM-CRF)的临床文本命名实体识别方法。改进的单词嵌入模型融合词根、拼音和字符本身意义,使用了来自Transformers的双向编码器表示,使单词嵌入向量具有汉字和临床文本的特点,该方法通过在临床命名实体识别任务中引入深度卷积神经网络(Deep Convolutional Neural Networks,DCNN),解决了CNN预测时丢失部分信息无法找回的问题。通过使用DCNN,本文模型能够更有效地捕获全局信息、获取字符之间的权重关系和多层次语义特征信息,从而提高了临床命名实体识别的准确性。在数据集CCKS2017和CCKS2018上分别进行实验,实验结果表明,与基准模型相比,该模型F1值分别改善了0.48%,0.68%,0.6%,0.58%,0.04%和1.43%,2.36%,3.31%,1.11%,0.17%。为了进一步验证本文的模型,进行了两种消融实验。结果表明,在两个数据集CCKS2017和CCKS2018上本文模型对比变体模型M1,F1值分别改善了0.79%和0.84%;对比变体模型M2,F1值分别改善了0.53%和0.64%。这些实验结果证明了本文所提算法的可行性。展开更多
为解决水产医学命名实体识别中存在的嵌套实体识别准确率不高的问题,提出一种基于多核卷积的命名实体识别模型(BERT+Multi-CNN+CRF),采用多核卷积神经网络提取嵌套实体特征,通过BERT(bidirectional encoder representations from transf...为解决水产医学命名实体识别中存在的嵌套实体识别准确率不高的问题,提出一种基于多核卷积的命名实体识别模型(BERT+Multi-CNN+CRF),采用多核卷积神经网络提取嵌套实体特征,通过BERT(bidirectional encoder representations from transformers)方法对输入语料进行预训练,丰富嵌套实体位置向量信息,获得嵌套实体输入特征矩阵,将提取特征矩阵与输入特征矩阵融合,以增强嵌套实体的特征表示,并进行不同模型的对比试验。结果表明,本文中提出的BERT+Multi-CNN+CRF模型,在水产医学嵌套命名实体识别任务中的准确率、召回率和F1值分别为88.04%、88.92%和88.48%,与识别准确率较高的BERT+BiLSTM+ATT+CRF模型相比,分别提高了2.25%、3.23%和2.74%。研究表明,本文中提出的BERT+Multi-CNN+CRF模型可有效解决水产医学嵌套实体识别准确率不高的问题,是一种有效的水产医学嵌套命名实体识别方法。展开更多
文摘针对中文网络安全领域缺乏公开数据集和有效的命名实体识别(Named Entity Recognition,NER)方法,提出一种融合汉字多源信息的网络安全NER方法。通过构建数据集中所有字符的偏旁和字频向量表,增强了中文字向量的特征表达能力,嵌入到改进的词汇融合模型中进行字向量与词向量的融合,输入到条件随机场(Conditional Random Fields,CRF)进行解码。实验结果表明,该方法在保持较快解码速度和占用较低计算机资源的情况下,在网络安全数据集上,其准确率、召回率和F1值分别为0.8649、0.8402和0.8523,均优于现有模型,能够为后续网络安全知识图谱的构建提供支撑。
文摘为解决水产医学命名实体识别中存在的嵌套实体识别准确率不高的问题,提出一种基于多核卷积的命名实体识别模型(BERT+Multi-CNN+CRF),采用多核卷积神经网络提取嵌套实体特征,通过BERT(bidirectional encoder representations from transformers)方法对输入语料进行预训练,丰富嵌套实体位置向量信息,获得嵌套实体输入特征矩阵,将提取特征矩阵与输入特征矩阵融合,以增强嵌套实体的特征表示,并进行不同模型的对比试验。结果表明,本文中提出的BERT+Multi-CNN+CRF模型,在水产医学嵌套命名实体识别任务中的准确率、召回率和F1值分别为88.04%、88.92%和88.48%,与识别准确率较高的BERT+BiLSTM+ATT+CRF模型相比,分别提高了2.25%、3.23%和2.74%。研究表明,本文中提出的BERT+Multi-CNN+CRF模型可有效解决水产医学嵌套实体识别准确率不高的问题,是一种有效的水产医学嵌套命名实体识别方法。