期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进的随机森林分类器网络入侵检测方法 被引量:44
1
作者 夏景明 李冲 +1 位作者 谈玲 周刚 《计算机工程与设计》 北大核心 2019年第8期2146-2150,共5页
目前网络入侵检测方法大多基于改进的机器学习算法,但是机器学习算法会出现过拟合情况,导致入侵检测准确率降低。为解决该问题,提出一种改进的随机森林分类器网络入侵检测方法,通过高斯混合模型聚类算法将数据分成不同的簇,为每一个簇... 目前网络入侵检测方法大多基于改进的机器学习算法,但是机器学习算法会出现过拟合情况,导致入侵检测准确率降低。为解决该问题,提出一种改进的随机森林分类器网络入侵检测方法,通过高斯混合模型聚类算法将数据分成不同的簇,为每一个簇训练不同的随机森林分类器,通过这些训练好的随机森林分类器进行网络入侵检测。训练和实验数据采用NSL-KDD网络入侵数据集,实施中首先根据属性比率数据特征提取方法进行数据处理,然后进行高斯混合聚类,最后使用随机森林分类器对聚类结果进行训练。实验结果表明,该方法相比其它机器学习算法具有更高的入侵检测准确率。 展开更多
关键词 网络安全入侵检测 机器学习 随机森林分类器 高斯混合聚类 属性比特征提取 网络入侵检测数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部