期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于粗糙集的公共网络入侵检测方法研究 被引量:8
1
作者 庞帮艳 张艳敏 《现代电子技术》 北大核心 2017年第4期28-31,共4页
传统方法在对公共网络入侵数据检测时存在冗余度高、维数大、精确度差等问题。为了提高公共网络安全防护的实时性和有效性,提出一种基于优化粗糙集理论的公共网络检测方法。针对有入侵风险的数据进行检测和筛选,在粗糙集(RS)概念基础上... 传统方法在对公共网络入侵数据检测时存在冗余度高、维数大、精确度差等问题。为了提高公共网络安全防护的实时性和有效性,提出一种基于优化粗糙集理论的公共网络检测方法。针对有入侵风险的数据进行检测和筛选,在粗糙集(RS)概念基础上对其精度进行优化,减少信息的丢失,运用MDLP运算准则完成对数据的离散化处理,使用遗传算法进行数据约简,导出数据分类规则并识别出入侵数据。仿真试验结果表明,所提出的入侵数据检测方法,在入侵检测率和误差率方面传统算法更为有效。 展开更多
关键词 网络入侵数据检测 离散化处理 遗传算法 数据约简
在线阅读 下载PDF
改进的随机森林分类器网络入侵检测方法 被引量:44
2
作者 夏景明 李冲 +1 位作者 谈玲 周刚 《计算机工程与设计》 北大核心 2019年第8期2146-2150,共5页
目前网络入侵检测方法大多基于改进的机器学习算法,但是机器学习算法会出现过拟合情况,导致入侵检测准确率降低。为解决该问题,提出一种改进的随机森林分类器网络入侵检测方法,通过高斯混合模型聚类算法将数据分成不同的簇,为每一个簇... 目前网络入侵检测方法大多基于改进的机器学习算法,但是机器学习算法会出现过拟合情况,导致入侵检测准确率降低。为解决该问题,提出一种改进的随机森林分类器网络入侵检测方法,通过高斯混合模型聚类算法将数据分成不同的簇,为每一个簇训练不同的随机森林分类器,通过这些训练好的随机森林分类器进行网络入侵检测。训练和实验数据采用NSL-KDD网络入侵数据集,实施中首先根据属性比率数据特征提取方法进行数据处理,然后进行高斯混合聚类,最后使用随机森林分类器对聚类结果进行训练。实验结果表明,该方法相比其它机器学习算法具有更高的入侵检测准确率。 展开更多
关键词 网络安全入侵检测 机器学习 随机森林分类器 高斯混合聚类 属性比特征提取 网络入侵检测数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部