基波等效法是无线电能传输(wireless power transfer,WPT)技术的主要研究方法,该方法将整流性负载的基波阻抗等效为某一纯电阻,为系统的建模和分析提供基础。但该方法忽略整流性负载谐波阻抗的影响,使WPT系统的实际响应与理论分析结果...基波等效法是无线电能传输(wireless power transfer,WPT)技术的主要研究方法,该方法将整流性负载的基波阻抗等效为某一纯电阻,为系统的建模和分析提供基础。但该方法忽略整流性负载谐波阻抗的影响,使WPT系统的实际响应与理论分析结果存在较大的误差,从而影响系统的模型精度,限制WPT系统的进一步优化设计。该文以基于串/串并(series/series-parallel,S/SP)补偿网络的WPT系统为研究对象,分析利用基波等效法进行建模产生误差的原因,并提出一种基于迭代法的整流性负载基波以及各次谐波等效阻抗的精确计算方法。在此基础上,建立WPT系统的精确电路响应模型,所提模型可以有效表征发射线圈电流的畸变特性,并根据系统响应与补偿网络参数的关系获得系统逆变器开关损耗的优化设计方法。最后,搭建一台3kW的WPT系统样机,实验结果验证理论分析的正确性和可行性。展开更多
The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers b...The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.展开更多
文摘基波等效法是无线电能传输(wireless power transfer,WPT)技术的主要研究方法,该方法将整流性负载的基波阻抗等效为某一纯电阻,为系统的建模和分析提供基础。但该方法忽略整流性负载谐波阻抗的影响,使WPT系统的实际响应与理论分析结果存在较大的误差,从而影响系统的模型精度,限制WPT系统的进一步优化设计。该文以基于串/串并(series/series-parallel,S/SP)补偿网络的WPT系统为研究对象,分析利用基波等效法进行建模产生误差的原因,并提出一种基于迭代法的整流性负载基波以及各次谐波等效阻抗的精确计算方法。在此基础上,建立WPT系统的精确电路响应模型,所提模型可以有效表征发射线圈电流的畸变特性,并根据系统响应与补偿网络参数的关系获得系统逆变器开关损耗的优化设计方法。最后,搭建一台3kW的WPT系统样机,实验结果验证理论分析的正确性和可行性。
基金Projects(71301115,71271150,71101102)supported by the National Natural Science Foundation of ChinaProject(20130032120009)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.