期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于L-M神经网络优化算法的池塘水色判别系统的初步建立 被引量:3
1
作者 王海英 曹晶 +2 位作者 谢骏 王广军 胡朝莹 《渔业现代化》 北大核心 2010年第5期19-21,37,共4页
为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,... 为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,能实现对养殖池塘水质的预测。系统的开发和使用对实现水产健康养殖、智能控制和计算机管理具有一定实用价值. 展开更多
关键词 水色图像 图像特征值 L-M神经网络优化算法 水质预测
在线阅读 下载PDF
一个基于最小割集扩容的网络优化算法
2
作者 刘玉华 毛经中 肖德宝 《计算机科学》 CSCD 北大核心 2003年第8期37-39,共3页
When designing the topology architecture of a large network,or managing and controlling a run network,the battleneck is always changeable with the increase of the network flow,which must be considered. In this paper ,... When designing the topology architecture of a large network,or managing and controlling a run network,the battleneck is always changeable with the increase of the network flow,which must be considered. In this paper ,af-ter analyzing the Ford_Fulkerson algorithm,we point out the relationship between the network min-cutset and thenetwork bottleneck,present an optimal capacity expansion algorithm based on min-cutest ,and take a network instanceto analyze and prove our algorithm in detail. This algorithm can improve the capacity of network effectively and solvethe bottleneck problem of the network. 展开更多
关键词 网络优化算法 计算机网络 网络流理论 最小割集理论
在线阅读 下载PDF
基于弹性网降维及花授粉算法优化BP神经网络的短期电力负荷预测 被引量:45
3
作者 张淑清 杨振宁 +2 位作者 张立国 苑世钰 王志义 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第7期47-54,共8页
电力负荷预测为电力系统规划和运行提供可靠的决策依据。随着智能电网的全面发展,数据采集与监视控制系统(SCADA)获取数据量增加,数据的结构也更加复杂,负荷的频繁变化以及地区性的气象因素等都将影响负荷的预测的准确性。提出一种弹性... 电力负荷预测为电力系统规划和运行提供可靠的决策依据。随着智能电网的全面发展,数据采集与监视控制系统(SCADA)获取数据量增加,数据的结构也更加复杂,负荷的频繁变化以及地区性的气象因素等都将影响负荷的预测的准确性。提出一种弹性网(EN)进行大数据降维以及花授粉算法(FPA)优化BP神经网络的短期电力负荷预测方法。首先采用弹性网对负荷和气象等高维大数据进行选择和降维。弹性网通过在惩罚项中添加L1范数和L2范数,兼具了最小绝对值收缩及变量选择(LASSO)和岭回归的优点,克服了LASSO降维时因为数据内部存在共线性和群组效应而影响降维效果的问题;然后,考虑到BP神经网络权值和阈值容易受到初值的影响、收敛速度慢以及容易陷入局部最优,引入花授粉算法(FPA)优化BP神经网络,通过与粒子群算法(PSO)对比得出花授粉算法寻优速度更快,效果更好。本文方法应用于实际电力负荷预测,结果表明能有效提高预测精度。 展开更多
关键词 短期电力负荷预测 大数据变量选择及降维 最小绝对值收缩及变量选择 弹性网 花授粉算法优化BP神经网络
在线阅读 下载PDF
新型建筑耐候钢铸造性能的神经网络算法优化 被引量:1
4
作者 汤东 王兵 刘松林 《热加工工艺》 北大核心 2023年第1期78-81,共4页
为了进行新型建筑耐候钢铸造性能优化,本文以合金元素、合金元素添加量、熔炼温度、静置时间和浇注温度5个神经单元为输入层参数、以腐蚀电位为输出层参数,以tansig函数为隐含层传递函数、purelin函数为输出层传递函数,构建了5×30&... 为了进行新型建筑耐候钢铸造性能优化,本文以合金元素、合金元素添加量、熔炼温度、静置时间和浇注温度5个神经单元为输入层参数、以腐蚀电位为输出层参数,以tansig函数为隐含层传递函数、purelin函数为输出层传递函数,构建了5×30×6×1四层拓扑结构的新型建筑耐候钢铸态性能神经网络优化模型,并进行了模型的学习训练与预测验证。结果表明:模型具有较佳的预测能力和较高的预测精度,模型相对预测误差介于3.57%与5.02%之间,平均相对预测误差4.24%。模型优化出的新型建筑耐候钢是在09MnCuPTi钢中添加0.3%Ce,熔炼温度是1630℃、静置时间是30 min、浇注温度是1600℃。与09MnCuPTi建筑耐候钢相比,优化的新型建筑耐候钢的腐蚀电位从-676 mV正移到-543 mV,正移133 mV,耐腐蚀性能得到明显提高。 展开更多
关键词 神经网络算法优化 铸态性能 耐腐蚀性能 建筑耐候钢 合金化 09MnCuPTi钢
在线阅读 下载PDF
网络优化调度算法在船舶大数据通信中的应用 被引量:4
5
作者 张毅 张绛丽 刘倍雄 《舰船科学技术》 北大核心 2018年第4X期94-96,共3页
我国常用的船舶通信网络技术难以满足当前持续增长的海量信息量数据通信需求,易造成信息传递延时问题,严重影响船舶航行安全。因此结合网络优化调度算法对船舶通信系统进行分析和设计,以达到提高船舶网络信息通信质量和网络通信的传输速... 我国常用的船舶通信网络技术难以满足当前持续增长的海量信息量数据通信需求,易造成信息传递延时问题,严重影响船舶航行安全。因此结合网络优化调度算法对船舶通信系统进行分析和设计,以达到提高船舶网络信息通信质量和网络通信的传输速率,有效保障船舶航行安全的目的。为检验网络优化调度算法对船舶网络通信的实时性影响,对应用于船舶通信网络系统中常见的延时问题进行实验检测,以此考察在交换式船舶通信网络通信效果。数据检测结果表明网络优化调度算法可有效提高船舶通信效果,有效解决网络信息传输延时问题,满足船舶在航行过程中对网络通信的实时性需求。 展开更多
关键词 网络优化调度算法 网络通信 大数据通信系统 网络通信技术
在线阅读 下载PDF
基于遗传算法优化的汽车主动转向控制研究 被引量:4
6
作者 霍春宝 程艳 +2 位作者 王京 吴玉尚 王燕 《机电工程》 CAS 2016年第1期122-126,共5页
针对汽车线控主动转向行驶稳定性问题,对汽车线控主动转向的控制策略和控制方法进行了研究;并对汽车的动力学模型进行了建立及简化;利用遗传算法可以克服BP网络收敛速度慢和极易陷入局部极小值等特点,提出了一种基于遗传算法优化BP神经... 针对汽车线控主动转向行驶稳定性问题,对汽车线控主动转向的控制策略和控制方法进行了研究;并对汽车的动力学模型进行了建立及简化;利用遗传算法可以克服BP网络收敛速度慢和极易陷入局部极小值等特点,提出了一种基于遗传算法优化BP神经网络的线控转向系统。通过选择典型工况,利用Carsim和Matlab/Simulink联合仿真平台对不同的控制方法进行了仿真验证。研究结果表明,基于遗传算法优化的BP网络控制对汽车主动转向控制效果较好,能使实际横摆角速度对理想的横摆角速度实现很好的跟踪,并显著提高了汽车行驶稳定性。 展开更多
关键词 汽车 汽车主动转向 遗传算法优化BP网络的控制 横摆角速度 稳定性
在线阅读 下载PDF
基于粒子群优化算法的PSO-BP海底声学底质分类方法 被引量:15
7
作者 陈佳兵 吴自银 +3 位作者 赵荻能 周洁琼 李守军 尚继宏 《海洋学报》 CAS CSCD 北大核心 2017年第9期51-57,共7页
利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特... 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。 展开更多
关键词 基于粒子群优化算法的BP神经网络 特征向量 粒子群算法 底质分类
在线阅读 下载PDF
基于粒子群优化算法的测光红移回归预测 被引量:3
8
作者 穆永欢 邱波 +3 位作者 魏诗雅 宋涛 郑子鹏 郭平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第9期2693-2697,共5页
星系的红移在天文研究中极其重要,星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。利用斯隆巡天项目发布的SDSSDR13的150000个星系的测光及光谱数据进行分析,首先根据颜色特征并基于聚类的方法对星系进行分类,由分... 星系的红移在天文研究中极其重要,星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。利用斯隆巡天项目发布的SDSSDR13的150000个星系的测光及光谱数据进行分析,首先根据颜色特征并基于聚类的方法对星系进行分类,由分类结果可知早型星系的占比较大。对比了三种不同的机器学习算法对早型星系进行测光红移回归预测实验,并找出最优的方法。实验中将星系样本中u,g,r,i,z五个波段的测光值以及两两做差得到的10个颜色特征作为输入数据,首先构建BP网络,使用BP算法对星系的测光红移进行回归预测;然后利用遗传算法(GA)优化BP网络各层参数,将优化后的GA-BP算法应用于早型星系的回归预测试验中。考虑到GA算法的复杂操作会影响预测效率,并且粒子群算法(PSO)不仅稳定性高且操作简单,因此将粒子群算法应用到星系样本中早型星系的测光红移回归预测实验中,进而采用粒子群算法优化BP网络(PSO-BP)。实验中将光谱红移作为期望值,采用均方差(MSE)作为误差分析指标来评判三种算法的精度,将PSO-BP回归预测结果与BP网络模型、GA-BP网络模型进行比较。由实验结果可知,BP网络的MSE值为0.00192,GA-BP网络的MSE值0.001728,PSO-BP网络的MSE值为0.001708。实验结果表明,所用到的PSO-BP优化模型在精度上优于BP神经网络模型和GA-BP神经网络模型,分别提高了11.1%和1.2%;在效率上优于传统的K近邻(KNN)测光红移估计算法,克服了KNN算法中遍历所有数据样本进行训练的缺点并且其泛化性能优于其它BP网络优化模型。 展开更多
关键词 测光红移 粒子群优化 粒子群算法优化BP网络 BP神经网络 GA-BP神经网络
在线阅读 下载PDF
基于GA-BP网络的数控机床动态误差预测研究 被引量:2
9
作者 李帅杰 陈光胜 《机电工程》 CAS 北大核心 2024年第10期1747-1758,共12页
动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非... 动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非线性特征两方面对动态误差影响因素进行了深入分析,确定了神经网络输入输出参数;然后,采用了遗传算法对BP神经网络进行了优化,建立了动态误差模型,获得了最优网络学习参数,从而实现了对动态跟随误差的精准预测;之后,采用三次样条插值的方法对理想轨迹与实际轨迹之间的轮廓误差进行了计算,有效提高了轮廓误差估算精度;最后,采用了五轴数控机床进行了实验,对模型的有效性进行了验证。研究结果表明:所建神经网络模型可以精准预测机床反向越冲特性对轮廓误差的影响,各轴的动态误差预测精度为±3μm,复杂轨迹轮廓误差预测精度为±1.5μm。实验结果验证了所建模型的可靠性,为后续机床动态误差建模与控制研究提供了一定的参考价值。 展开更多
关键词 高速高精度数控机床 动态误差 非线性特征 遗传算法优化的反向传播神经网络 轮廓误差估算
在线阅读 下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究 被引量:2
10
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
在线阅读 下载PDF
电力市场中梯级水电站优化运行的研究 被引量:23
11
作者 蔡兴国 林士颖 +2 位作者 马平 孙富华 刘振平 《电网技术》 EI CSCD 北大核心 2003年第9期6-9,共4页
研究了在发电侧电力市场中梯级水电站的优化运行问题,提出了改进的网络流优化算法。该算法将梯级水电站的优化运行过程分为寻找可行流与同一时段优化出力两个阶段,在寻找可行流阶段采用经典的网流法,各梯级水电站按照相同的步长增加发... 研究了在发电侧电力市场中梯级水电站的优化运行问题,提出了改进的网络流优化算法。该算法将梯级水电站的优化运行过程分为寻找可行流与同一时段优化出力两个阶段,在寻找可行流阶段采用经典的网流法,各梯级水电站按照相同的步长增加发电流量;在同一时段优化出力阶段采用改进的网流法,对各梯级水电站按照各自不同的步长进行优化。该算法模型简单,容易实现。算例结果表明,改进的网络流优化法计算精度高,实用性强,适用于梯级水电站优化运行的解算。 展开更多
关键词 梯级水电站 优化运行 电力市场 网络优化算法 电力系统
在线阅读 下载PDF
基于改进K-Means聚类和BP神经网络的台区线损率计算方法 被引量:176
12
作者 李亚 刘丽平 +3 位作者 李柏青 易俊 王泽忠 田世明 《中国电机工程学报》 EI CSCD 北大核心 2016年第17期4543-4551,共9页
配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台... 配电网线损管理中面临的主要问题有表计配置不齐备、运行数据不易收集、元件和节点数过多。这些问题导致线损率计算工作十分繁杂。提出了一种基于改进K-Means聚类算法和Levenberg-Marquardt(LM)算法优化的BP神经网络模型快速计算低压台区线损率的方法,并通过编程加以实现。根据样本的电气特征参数,提出了改进K-Means聚类算法,将台区样本分类,解决了台区线损率数值分散的问题。在此基础上,采用LM算法优化的BP神经网络模型对样本数据按类进行训练,利用BP神经网络拟合样本线损率与电气特征参数之间的关系,得到其变化规律。以某地区601个台区样本数据为例进行仿真计算,验证了所提方法的准确性。结果表明,与标准BP神经网络模型相比,LM算法优化的BP神经网络模型具有快速收敛、高精度等优点。 展开更多
关键词 低压台区 电气特征参数 线损率 改进K-Means聚类算法 LM算法优化的BP神经网络
在线阅读 下载PDF
自适应变系数粒子群和径向基神经网络在短期电价预测中的应用(英文) 被引量:3
13
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 李娜 孟欣 《电网技术》 EI CSCD 北大核心 2010年第1期98-106,共9页
分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法... 分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法与RBF神经网络结合形成自适应变系数粒子群-径向基(AVCPSO-RBF)神经网络混合优化算法。基于此优化算法,建立了短期电价预测模型,并利用贵州电网历史数据进行短期电价预测。仿真计算结果表明,AVCPSO-RBF混合优化算法在短期电价预测中优于传统RBF神经网络法和PSO-RBF神经网络方法,克服了上述2种方法的缺点,改善了RBF神经网络的泛化能力,具有输出稳定性好、预测精度高、收敛速度快等特点,使用该方法得到的各日预测电价的平均百分比误差可控制在2%以内,平均绝对误差最大值为1.652RMB/MW·h。 展开更多
关键词 电价预测 粒子群优化算法:径向基神经网络 混合优化算法 泛化能力
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
14
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
三维荧光光谱结合HGA-RBF神经网络在多环芳烃浓度检测中的应用(英文) 被引量:4
15
作者 王书涛 郑亚南 +3 位作者 王志芳 马晓晴 王昌冰 程琪 《光子学报》 EI CAS CSCD 北大核心 2017年第9期69-75,共7页
采用FS920荧光光谱仪分析了苯并[k]荧蒽(BkF)、苯并[b]荧蒽(BbF)和两者混合物的荧光特性.结果表明BkF的两个荧光峰分别位于306nm/405nm和306nm/430nm,BbF的两个荧光峰分别位于306nm/410nm和306nm/435nm.BkF和BbF不同浓度配比及其相互间... 采用FS920荧光光谱仪分析了苯并[k]荧蒽(BkF)、苯并[b]荧蒽(BbF)和两者混合物的荧光特性.结果表明BkF的两个荧光峰分别位于306nm/405nm和306nm/430nm,BbF的两个荧光峰分别位于306nm/410nm和306nm/435nm.BkF和BbF不同浓度配比及其相互间的荧光干扰,使得混合物荧光特性差异较大,荧光强度和浓度间关系变得复杂.为准确测定混合物中BkF和BbF的浓度,采用递阶算法优化的径向基神经网络对其进行检测,结果表明BkF和BbF的平均回收率分别为98.45%和97.71%.该方法能够实现多环芳烃类污染物共存成分的识别和浓度预测. 展开更多
关键词 光谱学 三维荧光光谱 递阶算法优化的径向基神经网络 多环芳烃 浓度检测
在线阅读 下载PDF
基于RBF算法的探空湿度太阳辐射误差预测 被引量:1
16
作者 冒晓莉 张鹏 +1 位作者 张加宏 赵雪伟 《现代电子技术》 北大核心 2020年第19期146-151,共6页
针对传统BP神经网络算法预测的探空湿度太阳辐射温度误差偏大的问题,基于南京大桥的GTS1-2湿度传感器及其防雨帽模型,采用计算流体动力学(CFD)软件,通过PRO/E建模、ICEM划分网格及FLUENT仿真,以高空实际探测中典型气压、太阳高度角和太... 针对传统BP神经网络算法预测的探空湿度太阳辐射温度误差偏大的问题,基于南京大桥的GTS1-2湿度传感器及其防雨帽模型,采用计算流体动力学(CFD)软件,通过PRO/E建模、ICEM划分网格及FLUENT仿真,以高空实际探测中典型气压、太阳高度角和太阳辐射量为变量仿真出2530组温度误差的数据样本。数据样本通过BP,PSO-BP,GA-BP,RBF神经网络算法进行优化对比,最终采用RBF神经网络算法构建预测模型,可预测出不同环境下探空的湿度太阳辐射温度误差,且预测出的温度误差最小。 展开更多
关键词 气象探测 GTS1-2湿度传感器 计算流体动力学 太阳辐射偏干误差 粒子群优化神经网络算法 遗传神经网络算法 径向基函数神经网络算法
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
17
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究 被引量:19
18
作者 经海翔 黄友锐 +1 位作者 徐善永 唐超礼 《工矿自动化》 北大核心 2021年第11期53-60,共8页
针对当前矿用通风机故障诊断方法存在预测性较差、准确率较低的问题,提出了一种基于数字孪生和概率神经网络(PNN)的矿用通风机预测性故障诊断方法。利用Unity3D、3dsMax、SciFEA等搭建通风机的数字孪生模型,模拟出真实通风机的结构特点... 针对当前矿用通风机故障诊断方法存在预测性较差、准确率较低的问题,提出了一种基于数字孪生和概率神经网络(PNN)的矿用通风机预测性故障诊断方法。利用Unity3D、3dsMax、SciFEA等搭建通风机的数字孪生模型,模拟出真实通风机的结构特点、物理属性和运行规则,利用PREspective与通风机的PLC实时通信,将通风机的运行状态实时映射至数字孪生模型中;以通风机的数字孪生模型为基础,结合专家知识、机器学习、历史数据等构建了通风机预测性故障诊断模型,通过分析通风机的实时数据与运行状态之间的关系,不断学习并更新模型参数;采用改进的鲸鱼优化算法(IWOA)通过包围猎物、捕食猎物和搜索猎物的生物行为求取平滑因子最优值并赋予PNN,利用优化后的PNN对通风机进行预测性故障诊断,对比通风机预测性故障诊断模型判断结果与实际情况是否相符,若诊断错误,则需要对预测性故障诊断模型中的参数进行修正,直到故障判断准确。实验结果表明,与遗传算法(GA)、粒子群算法(PSO)、鲸鱼优化算法(WOA)优化后的PNN故障诊断精度相比,IWOA优化后的PNN故障诊断精度达97.5%,说明基于数字孪生和PNN的矿用通风机预测性故障诊断方法可以满足通风机故障诊断的实时性与准确性要求。 展开更多
关键词 矿用通风机 预测性故障诊断 智能诊断 数字孪生 鲸鱼优化算法概率神经网络
在线阅读 下载PDF
基于GA-BP神经网络的红外CO_(2)传感器湿度补偿研究 被引量:3
19
作者 顾芳 邢俊 +3 位作者 李玲 裴昱 黄亚磊 张加宏 《传感技术学报》 CAS CSCD 北大核心 2021年第6期720-727,共8页
为了提高红外CO_(2)气体传感器的探测灵敏度和精度,首先研究了不同镀膜对非色散扁锥腔CO_(2)气体传感器的红外吸收效率和灵敏度的影响.然后搭建了湿度实验平台,着重研究了环境湿度对气体浓度测量结果的影响.最后,采用遗传算法优化的BP... 为了提高红外CO_(2)气体传感器的探测灵敏度和精度,首先研究了不同镀膜对非色散扁锥腔CO_(2)气体传感器的红外吸收效率和灵敏度的影响.然后搭建了湿度实验平台,着重研究了环境湿度对气体浓度测量结果的影响.最后,采用遗传算法优化的BP神经网络算法(GA-BP)对传感器进行了湿度补偿.实验结果表明:在室温条件下、0~2000×10^(-6)浓度范围内,镀金腔体的CO_(2)传感器具有更高的红外吸收效率和灵敏度;在40%~80%湿度范围内,CO_(2)气体传感器的测量误差与相对湿度密切相关,最高误差达645×10^(-6).采用GA-BP算法数据融合补偿后,传感器湿度漂移得到了较好抑制,整体平均误差小于±110×10^(-6),表明CO_(2)气体传感器的测量精度得到了大幅提升. 展开更多
关键词 红外CO_(2)气体传感器 扁锥腔 湿度补偿 遗传算法优化的BP神经网络
在线阅读 下载PDF
基于神经网络的全球三维温盐场重构技术研究 被引量:4
20
作者 聂旺琛 王喜冬 +2 位作者 陈志强 何子康 范开桂 《热带海洋学报》 CAS CSCD 北大核心 2022年第2期1-15,共15页
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA;generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练,构建海表温度、盐度、海面高度与... 文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA;generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练,构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型,并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先,利用独立的2016年SODA海表数据作为模型输入进行理想重构试验,结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰,与世界海洋图集WOA13资料相比减小约50%和60%。然后,利用卫星观测的海表信息作为模型输入进行实际应用试验,并与Argo观测剖面进行比较评估。试验结果表明,重构模型能有效表征海水温、盐特征,其中重构温、盐MRMSE分别为0.79℃和0.16‰,相比WOA气候态减小27%和11%。误差的垂向分布显示,重构温度RMSE从海表向下迅速增大,至100m达到峰值1.35℃,而后又迅速回落,至250m处为0.81℃,跃层往下不断减小;重构盐度RMSE基本随深度增大而减小,误差峰值位于25m附近,约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。 展开更多
关键词 果蝇优化广义回归神经网络算法 三维温盐场 重构 卫星观测数据 SODA再分析数据
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部