期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Risk assessment of rockburst using SMOTE oversampling and integration algorithms under GBDT framework 被引量:2
1
作者 WANG Jia-chuang DONG Long-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2891-2915,共25页
Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall... Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management. 展开更多
关键词 rockburst evaluation SMOTE oversampling random search grid K-fold cross-validation confusion matrix
在线阅读 下载PDF
基于合并思想和竞争学习思想的聚类新算法 被引量:3
2
作者 段敏 张锡恩 《计算机工程与设计》 CSCD 北大核心 2006年第9期1656-1659,共4页
针对分类目的准确标识出有样本分布的空间区域位置,没有类分布先验知识,类数不能预先确定的情况,提出一种聚类新方法。该算法的初始类心为所有样本点,竞争获胜规则由最近邻改为阈值,竞争过程中同时进行类心合并。在样本数量较大时,提出... 针对分类目的准确标识出有样本分布的空间区域位置,没有类分布先验知识,类数不能预先确定的情况,提出一种聚类新方法。该算法的初始类心为所有样本点,竞争获胜规则由最近邻改为阈值,竞争过程中同时进行类心合并。在样本数量较大时,提出网格中心法和网格采样法降低计算复杂度。实验结果证实该算法对初始设置和参数不敏感,且结束条件容易确定,在一定程度上聚类效果优于其它算法。 展开更多
关键词 合并 竞争学习 样本空间 位置标识 网格中心法 网格采样法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部