期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于支持向量回归机的空调逐时负荷滚动预测算法 被引量:29
1
作者 周璇 杨建成 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期952-957,共6页
针对当前空调负荷预测算法精度不高难以满足空调系统节能优化控制的问题,提出基于支持向量回归机(Support Vector Regression,SVR)的空调逐时负荷滚动预测算法,建立SVR滚动预测模型,模型参数采用网格搜索遍历算法进行寻优。为简化模型... 针对当前空调负荷预测算法精度不高难以满足空调系统节能优化控制的问题,提出基于支持向量回归机(Support Vector Regression,SVR)的空调逐时负荷滚动预测算法,建立SVR滚动预测模型,模型参数采用网格搜索遍历算法进行寻优。为简化模型的复杂性,还对影响空调负荷的主要因素进行了相关性分析。此外,算法利用当日前1 h的滚动信息,不断对模型进行修正以提高负荷预测精度。最后探讨以期望误差为预测精度评价指标时,不同训练样本长度对神经网络和SVR算法预测精度的影响。预测结果表明:基于支持向量回归机的空调逐时负荷滚动预测算法较BP神经网络算法的预测精度提高10.3%,比常规支持向量回归机算法预测精度提高23.9%,训练样本较小时,算法预测性能更为优越。 展开更多
关键词 空调逐时负荷 滚动预测算法 支持向量回归机 网格搜索遍历算法 期望误差
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部