期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据恢复
1
作者
黄民水
邓志航
张健蔚
《水电能源科学》
北大核心
2024年第12期128-132,共5页
由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝...
由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝位移影响因子中筛选出影响较为显著的环境因子;基于长短期记忆神经网络(LSTM)搭建了大坝缺失数据恢复模型;采用自适应模拟退火粒子群算法(ASAPSO)对LSTM的3个超参数进行了优化;最后,依托湖南省资兴市东江大坝累计14年(2000~2014年)的监测数据,对所提方法的计算精度和计算效率进行了验证。结果表明,ASAPSO的引入使该模型的恢复精度和效率优于常规的机器学习算法,为大坝安全监测缺失数据的准确恢复提供了有力工具。
展开更多
关键词
混凝土双曲拱坝
缺失位移恢复
长短期记忆神经网络
结构健康监测
LASSO回归
自适应模拟退火粒子群算法
在线阅读
下载PDF
职称材料
题名
基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据恢复
1
作者
黄民水
邓志航
张健蔚
机构
武汉工程大学土木工程与建筑学院
武汉工程大学绿色土木工程材料与结构湖北省工程研究中心
出处
《水电能源科学》
北大核心
2024年第12期128-132,共5页
基金
国家大坝安全工程技术研究中心开放基金项目(CX2023B05)
水资源工程与调度全国重点实验室开放研究基金项目(2023SGG02)。
文摘
由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝位移影响因子中筛选出影响较为显著的环境因子;基于长短期记忆神经网络(LSTM)搭建了大坝缺失数据恢复模型;采用自适应模拟退火粒子群算法(ASAPSO)对LSTM的3个超参数进行了优化;最后,依托湖南省资兴市东江大坝累计14年(2000~2014年)的监测数据,对所提方法的计算精度和计算效率进行了验证。结果表明,ASAPSO的引入使该模型的恢复精度和效率优于常规的机器学习算法,为大坝安全监测缺失数据的准确恢复提供了有力工具。
关键词
混凝土双曲拱坝
缺失位移恢复
长短期记忆神经网络
结构健康监测
LASSO回归
自适应模拟退火粒子群算法
Keywords
concrete hyperbolic arch dam
missing displacement recovery
long short-term memory neural network
structural health monitoring
LASSO regression
adaptive simulated annealing particle swarm optimization algorithm
分类号
TV698.11 [水利工程—水利水电工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据恢复
黄民水
邓志航
张健蔚
《水电能源科学》
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部