期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据恢复
1
作者 黄民水 邓志航 张健蔚 《水电能源科学》 北大核心 2024年第12期128-132,共5页
由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝... 由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝位移影响因子中筛选出影响较为显著的环境因子;基于长短期记忆神经网络(LSTM)搭建了大坝缺失数据恢复模型;采用自适应模拟退火粒子群算法(ASAPSO)对LSTM的3个超参数进行了优化;最后,依托湖南省资兴市东江大坝累计14年(2000~2014年)的监测数据,对所提方法的计算精度和计算效率进行了验证。结果表明,ASAPSO的引入使该模型的恢复精度和效率优于常规的机器学习算法,为大坝安全监测缺失数据的准确恢复提供了有力工具。 展开更多
关键词 混凝土双曲拱坝 缺失位移恢复 长短期记忆神经网络 结构健康监测 LASSO回归 自适应模拟退火粒子群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部