期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
一种编解码结构的车牌图像超分辨率网络 被引量:6
1
作者 徐胜军 邓博文 +3 位作者 史亚 孟月波 刘光辉 韩九强 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第10期101-110,共10页
针对复杂实际场景中模糊、污损、扭曲、倾斜等车牌图像关键信息缺失以及新能源车牌背景与字符对比度低难以识别的问题,提出了一种编解码结构的车牌图像超分辨率网络。首先,构建一种基于编解码结构的车牌重构生成器网络,利用编码器对车... 针对复杂实际场景中模糊、污损、扭曲、倾斜等车牌图像关键信息缺失以及新能源车牌背景与字符对比度低难以识别的问题,提出了一种编解码结构的车牌图像超分辨率网络。首先,构建一种基于编解码结构的车牌重构生成器网络,利用编码器对车牌图像的纹理、字符等特征进行提取,解码器对车牌特征进行重构;然后,设计一种基于语义监督的判别器网络,在网络损失中引入了对抗损失与CTC(connectionist temporal classification)损失,增强生成器网络对车牌图像语义特征的表征能力;最后,基于VGG16网络提取车牌顶角点特征,利用坐标变换方法对车牌图像进行矫正,进一步提高重构清晰度与识别准确率。采用所提网络在自建XAUAT-Parking数据集和公开CCPD数据集上进行超分辨率重构与识别实验,结果表明:所提网络在CCPD数据集上的平均峰值信噪比可达25.5 dB,结构相似性(SSIM)可达0.989;在XAUAT-Parking数据集上峰值信噪比可达26.6 dB,结构相似性可达0.997。研究结果表明,该网络有较好的车牌图像超分辨率重建效果,而且对车牌关键信息缺失问题具有较强的鲁棒性。 展开更多
关键词 车牌图像 超分辨率 图像矫正 VGG16网络 编解码结构 生成对抗网络
在线阅读 下载PDF
双路径特征融合编解码结构的高速语义分割 被引量:4
2
作者 胡学刚 龚宇 敬力源 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第12期1911-1919,共9页
对基于深度学习的高精度图像语义分割模型参数量大、分割速度慢的问题,提出一种基于双路径特征融合编解码结构的语义分割模型.首先,该模型编码器通过对语义路径和空间路径同时进行编码,其能够融合不同的特征信息,弥补了空间信息和语义... 对基于深度学习的高精度图像语义分割模型参数量大、分割速度慢的问题,提出一种基于双路径特征融合编解码结构的语义分割模型.首先,该模型编码器通过对语义路径和空间路径同时进行编码,其能够融合不同的特征信息,弥补了空间信息和语义信息难以两全的弊端,对特征图进行高效的卷积操作;其次,该模型解码器通过融合高层语义信息和低层空间信息,有效地弥补了编码时下采样操作丢失的特征信息.在Cityscapes和Camvid数据集上的实验结果表明,整体模型的参数量仅为3.91×10^(6),在2个数据集上分别取得了67.7%和65.8%的均交并比,分割速度分别为111帧/s和86帧/s.对比其他同类模型,所提模型拥有更少的参数量和更高的精度,其分割速度远远超过实时语义分割的最低要求24帧/s. 展开更多
关键词 神经网络 语义分割 特征融合 深度学习 编解码结构
在线阅读 下载PDF
基于编解码双路卷积神经网络的视觉自定位方法 被引量:3
3
作者 贾瑞明 刘圣杰 +2 位作者 李锦涛 王赟豪 潘海侠 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第10期1965-1972,共8页
为了从单张RGB图像估计出相机的位姿信息,提出了一种深度编解码双路卷积神经网络(CNN),提升了视觉自定位的精度。首先,使用编码器从输入图像中提取高维特征;然后,使用解码器提升特征的空间分辨率;最后,通过多尺度位姿预测器输出位姿参... 为了从单张RGB图像估计出相机的位姿信息,提出了一种深度编解码双路卷积神经网络(CNN),提升了视觉自定位的精度。首先,使用编码器从输入图像中提取高维特征;然后,使用解码器提升特征的空间分辨率;最后,通过多尺度位姿预测器输出位姿参数。由于位置和姿态的特性不同,网络从解码器开始采用双路结构,对位置和姿态分别进行处理,并且在编解码之间增加跳跃连接以保持空间信息。实验结果表明:所提网络的精度与目前同类型算法相比有明显提升,其中相机姿态角度精度有较大提升。 展开更多
关键词 视觉自定位 编解码结构 卷积神经网络(CNN) 跳跃连接 双路网络
在线阅读 下载PDF
轻量金字塔解码结构的单目深度估计网络 被引量:2
4
作者 贾瑞明 李彤 +1 位作者 李阳 王一丁 《计算机应用研究》 CSCD 北大核心 2021年第1期293-297,共5页
针对单目深度估计网络庞大的参数量和计算量,提出一种轻量金字塔解码结构的单目深度估计网络,可以在保证估计精度的情况下降低网络模型的复杂度、减少运算时间。该网络基于编解码结构,以端到端的方式估计单目图像的深度图。编码端使用Re... 针对单目深度估计网络庞大的参数量和计算量,提出一种轻量金字塔解码结构的单目深度估计网络,可以在保证估计精度的情况下降低网络模型的复杂度、减少运算时间。该网络基于编解码结构,以端到端的方式估计单目图像的深度图。编码端使用ResNet50网络结构;在解码端提出了一种轻量金字塔解码模块,采用深度空洞可分离卷积和分组卷积以提升感受野范围,同时减少了参数量,并且采用金字塔结构融合不同感受野下的特征图以提升解码模块的性能;此外,在解码模块之间增加跳跃连接实现知识共享,以提升网络的估计精度。在NYUD v2数据集上的实验结果表明,与结构注意力引导网络相比,轻量金字塔解码结构的单目深度估计网络在误差RMS的指标上降低约11.0%,计算效率提升约84.6%。 展开更多
关键词 单目深度估计 卷积神经网络 编解码结构 轻量金字塔解码
在线阅读 下载PDF
基于视觉Transformer和双解码器的红外小目标检测方法 被引量:1
5
作者 代少升 刘科生 +3 位作者 黄炼 贺自强 毛兴华 任汶皓 《红外技术》 CSCD 北大核心 2024年第9期1070-1080,共11页
当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Tran... 当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Transformer作为编码器,能够有效地提取红外小目标图像的多尺度特征。视觉Transformer是一种新兴的深度学习架构,其通过自注意力机制捕捉图像中像素之间的全局关系,以处理长程依赖性和上下文信息。此外,本文还设计了一个由交互式解码器和辅助解码器组成的双解码器模块,旨在提高解码器对红外小目标的重构能力。该双解码器模块能够充分利用不同特征之间的互补信息,促进深层特征和浅层特征之间的交互,并通过将两个解码器的结果进行叠加,以更好地重构红外小目标。在广泛使用的公共数据集上的实验结果表明,本文提出的方法在F1和mIoU两个评价指标上的性能优于其他对比方法。 展开更多
关键词 红外小目标检测 视觉Transformer 多尺度特征融合 编解码结构
在线阅读 下载PDF
广域作物种植种类解析技术
6
作者 郭佳希 姚竟发 滕桂法 《中国农机化学报》 北大核心 2025年第9期352-360,共9页
实时精准获取田间土地信息是农业管理部门有效落实种植计划与监管的重要手段与关键环节。为克服基于无人机影像的农田分类中面临的精度不足、边缘模糊以及效率低下等问题,融合无人机图像处理及深度学习技术,改进DeepLabV3+网络模型。首... 实时精准获取田间土地信息是农业管理部门有效落实种植计划与监管的重要手段与关键环节。为克服基于无人机影像的农田分类中面临的精度不足、边缘模糊以及效率低下等问题,融合无人机图像处理及深度学习技术,改进DeepLabV3+网络模型。首先引入轻量级网络MS—MobileNetV2替代原有主干,显著提升识别效率;其次集成ECANet模块,有效抑制背景干扰因素,使模型专注于作物信息的提取;最后调整ASPP的膨胀率,级联不同尺度的信息,增强特征抓取能力。选取蠡县周边农田作为研究区域,利用无人机正射影像构建数据集,进行对比试验。结果表明:所提方法在玉米、山药、荒地、乔木、菜地的分类精度上分别提高0.7%、1.15%、5.04%、2.59%、0.95%,并且减少87.8%的参数量和50.5%的训练用时。 展开更多
关键词 广域作物 无人机 深度分离卷积 编解码结构 特征融合 高效通道注意力
在线阅读 下载PDF
融合编码器和视觉关键词搜索的图像中文描述
7
作者 孟繁聪 徐伟 +3 位作者 李海波 吴闽 郑竣杰 陈兴 《计算机应用与软件》 北大核心 2025年第4期208-216,244,共10页
针对当前已有模型缺乏对图像局部细节的关注以及趋向于通用型描述问题,提出一种采用融合编码器和视觉关键词搜索技术的图像中文描述方法。构建融合编码器,在一个卷积神经网络(CNN)中同时提取图像的局部和全局特征,丰富长短时记忆网络(LS... 针对当前已有模型缺乏对图像局部细节的关注以及趋向于通用型描述问题,提出一种采用融合编码器和视觉关键词搜索技术的图像中文描述方法。构建融合编码器,在一个卷积神经网络(CNN)中同时提取图像的局部和全局特征,丰富长短时记忆网络(LSTM)解码的语义信息;针对图像描述一般性表达,采用基于CNN的图像检索方法查找潜在视觉词汇,用于词向量解码;引入强化学习机制,在CIDEr评估指标上做句子层面上的优化,用以提高图像描述的词汇多样性。实验结果验证了所提方法的有效性。 展开更多
关键词 图像中文描述 编解码结构 注意力机制 图像检索 强化学习
在线阅读 下载PDF
全尺度密集卷积U型网络的视网膜血管分割算法 被引量:1
8
作者 夏平 何志豪 +2 位作者 雷帮军 彭程 王雨蝶 《计算机工程与设计》 北大核心 2024年第3期866-873,共8页
针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks... 针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks, CCF-DB)作为U型网络的编解码器用以提取视网膜血管的特征信息;在网络最底端嵌入混合注意力级联卷积密集块(mixed attention cascaded convolutional dense block, MACC-DB),进一步提升感受野,获取更高维的语义特征信息;在模型的解码部分采用全尺度的跳跃连接,捕获不同尺度下的血管特征信息,提升模型的分割精度。实验结果表明,在DRIVE数据集上,相比于U-Net、U-Net3+、SA-Unet、FR-Unet等算法,此算法的AUC值达到了98.26%,准确率为95.82%;在CHASE-DB1数据集上,此算法的AUC值达98.84%,准确率达96.66%。采用此算法进行视网膜血管分割,分割的精度和鲁棒性均有不同程度的提升,对细小血管分割达到了优良的效果。 展开更多
关键词 医学图像分割 深度学习 视网膜血管分割 全尺度密集卷积 编解码结构 混合注意力 级联卷积
在线阅读 下载PDF
结合残差与双注意力机制的U-Net语音增强方法 被引量:3
9
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
在线阅读 下载PDF
基于卷积调制与空间协作的水下图像增强 被引量:2
10
作者 郭伟 王欣哲 +1 位作者 王江达 王春艳 《计算机工程》 CAS CSCD 北大核心 2024年第8期310-318,共9页
针对光线在水中的散射和吸收效应造成水下图像纹理和结构不清晰的问题,提出一种基于卷积调制(CM)与空间协作(SC)的水下图像增强算法。以编码器-解码器作为基础网络,使用RepVGG的浅层和深层网络分别提取水下图像的纹理和结构特征。首先,... 针对光线在水中的散射和吸收效应造成水下图像纹理和结构不清晰的问题,提出一种基于卷积调制(CM)与空间协作(SC)的水下图像增强算法。以编码器-解码器作为基础网络,使用RepVGG的浅层和深层网络分别提取水下图像的纹理和结构特征。首先,特征主导网络将RepVGG中提取到的水下图像特征转化成具有不同尺度的纹理和结构特征,使其与解码器中的特征图进行拼接融合。其次,在编码器中使用卷积调制模块,采用深度可分离卷积(DSConv)模拟自注意力机制的方式减少图像细节信息的丢失,提高编码器特征提取的能力。最后,在解码器中使用空间协作卷积(SCConv),在空间维度上处理水下特征保留更多的位置信息,以提高解码器对融合后特征的增强能力。实验结果表明,该算法在视觉感知与性能指标上优于对比算法,峰值信噪比(PSNR)和结构相似性(SSIM)指标最高达到23.4465 dB和0.8946,水下彩色图像质量评价(UCIQE)和水下图像质量测量(UIQM)指标最高达到0.5826和3.0689,进一步证明了该算法能够有效增强水下图像的纹理和结构特征,具有较好的视觉感知效果。 展开更多
关键词 图像处理 水下图像增强 卷积调制 空间协作 编解码结构
在线阅读 下载PDF
基于上下文学习的轻量级自动抠图算法 被引量:5
11
作者 王文韵 黄根春 +1 位作者 田猛 王先培 《计算机工程与设计》 北大核心 2022年第1期94-100,共7页
为解决以往算法无法平衡精度和模型大小的问题,提出一种基于上下文学习的轻量级自动抠图算法。采用上下文特征聚合模块和编解码结构相结合的方式进行网络构建,其中编解码器能够有效进行特征提取,通过恢复空间信息捕获更清晰的对象边界;... 为解决以往算法无法平衡精度和模型大小的问题,提出一种基于上下文学习的轻量级自动抠图算法。采用上下文特征聚合模块和编解码结构相结合的方式进行网络构建,其中编解码器能够有效进行特征提取,通过恢复空间信息捕获更清晰的对象边界;上下文特征聚合模块能够编码多尺度的上下文信息,保留更多细节纹理特征,提高结果的精度。将深度可分离卷积应用到网络主干,形成更快、更强的编解码网络。经Compositon-1k数据集测试,其结果表明,在不进行任何后处理的情况下,该算法精度优于DIM算法,模型参数量较DIM模型降低了98.1%。 展开更多
关键词 深度学习 轻量级 自动抠图 编解码结构 深度可分离卷积
在线阅读 下载PDF
基于Informer的电池荷电状态估算及其稀疏优化方法 被引量:5
12
作者 何滢婕 刘月峰 +2 位作者 边浩东 郭威 张小燕 《电子学报》 EI CAS CSCD 北大核心 2023年第1期50-56,共7页
准确估计电池荷电状态(State Of Charge,SOC)是延长电动汽车电池使用寿命,确保电动汽车行驶安全的重要基础.传统的深度学习估计方法存在并行化计算效率不高、训练时间长的问题.为此,利用基于自注意力机制的Informer模型来估计电池SOC.... 准确估计电池荷电状态(State Of Charge,SOC)是延长电动汽车电池使用寿命,确保电动汽车行驶安全的重要基础.传统的深度学习估计方法存在并行化计算效率不高、训练时间长的问题.为此,利用基于自注意力机制的Informer模型来估计电池SOC.其降低了传统自注意力机制的时间复杂度、提高了硬件使用率、降低了训练时长,与其他深度学习方法相比估计更准确.然而Informer模型仍然存在体量大及参数冗余的问题,故提出稀疏优化方法 .利用基于彩票假设的幅值迭代剪枝方法对Informer进行稀疏化处理,突出主导注意力特征,实现了在降低参数冗余的同时提升模型估计精度.在室温下,提出的稀疏化Informer模型估计电池SOC的平均绝对误差和均方根误差分别达到0.285 8%和0.383 0%,相比于Informer模型在平均绝对误差指标上估计精度提升了25%.并验证了其具备估计不同类型锂电池SOC的泛化能力.与循环神经网络、卷积神经网络这类传统的深度学习模型相比,本模型进行电池SOC估计时训练速度更快,估计准确性和稳定性更高. 展开更多
关键词 荷电状态 锂离子电池 深度学习 编解码结构 自注意力机制
在线阅读 下载PDF
融合边缘语义信息的单目深度估计 被引量:4
13
作者 张玉亮 赵智龙 +3 位作者 付炜平 刘洪吉 熊永平 尹子会 《科学技术与工程》 北大核心 2022年第7期2761-2769,共9页
单目深度估计研究是许多视觉任务的基础,从图像中得到边缘清晰,细节丰富的深度图对于后续任务具有重要的作用。针对当前单目深度估计模型中不能深度融合图像语义信息以及不能较好地利用图像对象的边缘信息问题,首先构建了超像素拓扑关系... 单目深度估计研究是许多视觉任务的基础,从图像中得到边缘清晰,细节丰富的深度图对于后续任务具有重要的作用。针对当前单目深度估计模型中不能深度融合图像语义信息以及不能较好地利用图像对象的边缘信息问题,首先构建了超像素拓扑关系图,使用图神经网络提取局部边缘信息之间的相互关系,得到以超像素为节点的拓扑关系图,其次构建了基于编解码结构的深度估计与语义分割的联合模型,通过优化联合目标函数,使模型能够融合边缘语义信息,从而提高模型提取局部结构信息的能力。通过在NYU-Depth V2数据集中进行实验验证,结果表明模型能够构建细节丰富边缘清晰的深度图,提高了单目深度视觉估计的质量,与其他模型相比,该模型具有一定的优越性。 展开更多
关键词 单目深度估计 语义分割 图神经网络 超像素 编解码结构
在线阅读 下载PDF
一种基于深度学习的实时视频图像背景替换方法 被引量:1
14
作者 谢天植 雷为民 +1 位作者 张伟 李志远 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期1540-1546,共7页
针对视频会话业务的实时性需求,提出一种轻量级深度学习网络模型实现视频图像的实时背景替换功能.网络模型包含语义分割和背景替换两个模块.语义分割模块整体架构采用编解码结构,编码端使用编码器模块、空洞卷积金字塔池化模块、注意力... 针对视频会话业务的实时性需求,提出一种轻量级深度学习网络模型实现视频图像的实时背景替换功能.网络模型包含语义分割和背景替换两个模块.语义分割模块整体架构采用编解码结构,编码端使用编码器模块、空洞卷积金字塔池化模块、注意力模块以及增益模块提取特征;解码端使用解码器模块、调整模块以及编码器模块恢复图像,再传入背景替换模块完成背景替换.该网络模型在本文设定的数据集训练后分割精确度达到94.1%,分割速度达到42.5帧/s,在实时性和准确性上达到较好的平衡,具有很好的实用效果. 展开更多
关键词 实时视频图像 背景替换 深度学习 语义分割 编解码结构
在线阅读 下载PDF
融合多尺度特征和语义信息的单目深度估计
15
作者 周伟强 韩军 《电光与控制》 CSCD 北大核心 2022年第2期67-71,共5页
针对目前的无监督学习方法在单目图像深度估计中存在深度估计不准确、边缘模糊的问题,提出了一种融合多尺度特征信息和语义信息的无监督单目深度估计网络。该网络不仅引入了从编码器到解码器的跳层连接来实现不同尺度特征的提取和融合,... 针对目前的无监督学习方法在单目图像深度估计中存在深度估计不准确、边缘模糊的问题,提出了一种融合多尺度特征信息和语义信息的无监督单目深度估计网络。该网络不仅引入了从编码器到解码器的跳层连接来实现不同尺度特征的提取和融合,还在编码器和解码器之间引入多个空洞卷积并行的语义层来增加感受野,使得结果更加准确。最后在KITTI数据集上进行了训练和测试,误差指标均低于目前的无监督学习方法,图像预测的准确率在3个比例阈值下分别达到了91%,96.8%和98.7%,超过了所有的监督和无监督的方法,使场景中各目标的边缘更清晰,层次也更分明。 展开更多
关键词 深度估计 无监督学习 空洞卷积 多尺度特征 编解码结构
在线阅读 下载PDF
基于空洞卷积与动态多核融合池化的裂缝检测 被引量:5
16
作者 杨秋媛 李宁 +2 位作者 石林 庄丽华 徐守坤 《计算机工程与设计》 北大核心 2022年第12期3529-3537,共9页
针对现有裂缝检测方法在裂缝拓扑结构复杂、前后景像素不协调情况下产生的检测精度低的问题,提出一种基于空洞卷积和动态多核融合池化的裂缝检测方法。采用编、解码结构,编码器阶段插入空洞卷积,能够更大限度保留裂缝的细节与结构信息;... 针对现有裂缝检测方法在裂缝拓扑结构复杂、前后景像素不协调情况下产生的检测精度低的问题,提出一种基于空洞卷积和动态多核融合池化的裂缝检测方法。采用编、解码结构,编码器阶段插入空洞卷积,能够更大限度保留裂缝的细节与结构信息;解码器阶段引入动态多核融合池化模块,以更高效获得不同尺寸的裂缝信息。在自制数据集与公共数据集CRACK500上分别进行实验,并与其它算法进行比较,实验结果表明,该算法能更加精细化分割出细小的裂缝,有效提高裂缝检测精度。 展开更多
关键词 图像分割 裂缝检测 编解码网络结构 空洞卷积 动态多核融合池化模块
在线阅读 下载PDF
Screen image sequence compression method utilizing adaptive block size coding and hierarchical GOP structure
17
作者 武星 梅亮 +2 位作者 袭奇 张申生 陈延伟 《Journal of Central South University》 SCIE EI CAS 2010年第4期786-794,共9页
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra... To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs. 展开更多
关键词 screen image sequence compression adaptive block size hierarchical GOP structure intra-frame coding inter-frame coding
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部