期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ED-NAS:基于神经网络架构搜索的陶瓷晶粒SEM图像分割方法 被引量:8
1
作者 蔡超丽 李纯纯 +1 位作者 黄琳 杨铁军 《电子学报》 EI CAS CSCD 北大核心 2022年第2期461-469,共9页
为了提高深度卷积神经网络(Convolutional Neural Network,CNN)设计的自动化程度并进一步提高陶瓷晶粒扫描电子显微镜(Scanning Electron Microscope,SEM)图像分割的准确性,提出了一种基于神经网络架构搜索的陶瓷晶粒图像分割方法 .该... 为了提高深度卷积神经网络(Convolutional Neural Network,CNN)设计的自动化程度并进一步提高陶瓷晶粒扫描电子显微镜(Scanning Electron Microscope,SEM)图像分割的准确性,提出了一种基于神经网络架构搜索的陶瓷晶粒图像分割方法 .该方法设计多分支结构编码空间和链式结构解码空间,并构造多分支结构编码Cell和链式结构解码Cell;同时基于强化学习分别搜索最佳编码Cell和解码Cell;此外,基于编码-解码神经网络架构堆叠最佳Cell构建陶瓷晶粒图像分割CNN,并采用池化索引在解码阶段恢复丢失的细节信息.实验在包含了629张的陶瓷晶粒SEM图像数据集上进行,搜索最佳Cell耗时约148 GPU-时.与U-Net、SegNet等SOTA方法相比,该方法在陶瓷晶粒测试集上获得了更高的分割准确性(mIoU≈68.9%). 展开更多
关键词 神经网络架构搜索 编码-解码神经网络架构 陶瓷晶粒 图像分割 编码Cell 解码Cell
在线阅读 下载PDF
基于遥感图像的农作物干旱检测方法
2
作者 张江南 李吉龙 +3 位作者 王永杰 吕文羽 于瑷源 李文博 《青岛农业大学学报(自然科学版)》 2024年第4期295-300,共6页
针对目前基于遥感图像的农作物干旱检测方法准确率较低的问题,提出了一种基于编码-解码神经网络的图像检测方法。该方法以深度残差神经网络为特征提取主干网络,结合多尺度注意力池化和多尺度空洞卷积技术,通过有效融合高层和低层特征信... 针对目前基于遥感图像的农作物干旱检测方法准确率较低的问题,提出了一种基于编码-解码神经网络的图像检测方法。该方法以深度残差神经网络为特征提取主干网络,结合多尺度注意力池化和多尺度空洞卷积技术,通过有效融合高层和低层特征信息,减少信息损失,增强特征提取效果和农作物干旱边界的识别效果。使用该方法进行基于遥感图像的干旱检测,像素精度为91.05%,平均像素精度为76.19%,结果明显优于其他现有模型。 展开更多
关键词 遥感图像 编码-解码神经网络 农作物 干旱检测 多尺度注意力池化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部