针对提高飞机辅助动力装置(auxiliary power unit,APU)排气温度(exhaust gas temperature,EGT)参数的预测精度问题,提出了一种基于特征选择和多尺度卷积-长短期记忆网络编码器-解码器的EGT预测模型。首先,利用随机森林方法确定重要度较...针对提高飞机辅助动力装置(auxiliary power unit,APU)排气温度(exhaust gas temperature,EGT)参数的预测精度问题,提出了一种基于特征选择和多尺度卷积-长短期记忆网络编码器-解码器的EGT预测模型。首先,利用随机森林方法确定重要度较高的APU监测参数;其次,利用多尺度卷积神经网络能够提取信号深度特征和LSTM网络能够学习序列长时间依赖的特性,建立了编码器-解码器预测模型;最后,以某型APU实时报文数据为例,通过与其他方法进行对比验证了模型的可行性,能够提高EGT预测的准确度。展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
文摘针对提高飞机辅助动力装置(auxiliary power unit,APU)排气温度(exhaust gas temperature,EGT)参数的预测精度问题,提出了一种基于特征选择和多尺度卷积-长短期记忆网络编码器-解码器的EGT预测模型。首先,利用随机森林方法确定重要度较高的APU监测参数;其次,利用多尺度卷积神经网络能够提取信号深度特征和LSTM网络能够学习序列长时间依赖的特性,建立了编码器-解码器预测模型;最后,以某型APU实时报文数据为例,通过与其他方法进行对比验证了模型的可行性,能够提高EGT预测的准确度。
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.