期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
编码器-解码器结构的刀具磨损状态预测研究
1
作者 刘本刚 吴文江 +2 位作者 赵丹 王裴岩 彭春杨 《小型微型计算机系统》 北大核心 2025年第6期1530-1536,共7页
针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性... 针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性能最优,其中Transformer-BiGRU组合模型F1值达69.61%,显著优于GS-XGBoost(58.01%)、Attention-CNN(57.65%)等方法,研究表明基于编码器-解码器的刀具状态预测模型在航空钛合金复杂切削工况下具有显著优势,未来可通过模型优化和扩充样本数据进一步提升其性能. 展开更多
关键词 编码器-解码器结构 刀具磨损状态预测 TRANSFORMER 双向循环神经网络 航空钛合金高效加工
在线阅读 下载PDF
基于类别-实例分割的室内点云场景修复补全 被引量:10
2
作者 缪永伟 刘家宗 +1 位作者 孙瑜亮 吴向阳 《计算机学报》 EI CAS CSCD 北大核心 2021年第11期2189-2202,共14页
三维室内场景修复补全是计算机图形学﹑数字几何处理﹑3D计算机视觉中的重要问题.针对室内场景修复补全中难以处理大规模点云数据的问题,本文提出了一种基于类别-实例分割的室内点云场景修复补全框架.该框架包括点云场景分割模块和点云... 三维室内场景修复补全是计算机图形学﹑数字几何处理﹑3D计算机视觉中的重要问题.针对室内场景修复补全中难以处理大规模点云数据的问题,本文提出了一种基于类别-实例分割的室内点云场景修复补全框架.该框架包括点云场景分割模块和点云形状补全模块,前者由基于PointNet的类别分割网络和基于聚类的实例分割模块完成,后者由基于编码器-解码器结构的点云补全网络实现.本文框架以缺失的室内场景点云数据为输入,首先根据“类别-实例”分割策略,采用PointNet对室内场景进行类别分割,并利用基于欧式距离的聚类方法进行实例分割得到室内各家具点云,然后借助点云补全网络将分割出的缺失家具点云逐一进行形状补全并融合进原始场景,最终实现室内点云场景的修复.其中,为了实现缺失家具点云形状的补全,本文提出了一种基于编码器-解码器结构的点云补全网络,首先通过输入变换和特征变换对齐缺失的家具点云数据采样点位置与特征信息;然后借助权共享多层感知器和PointSIFT特征提取模块对各采样点提取形状特征和近邻点特征信息,并利用最大池化层与多层感知器编码提取出采样点的特征码字;最后将采样点特征码字加上网格坐标数据作为解码器的输入,解码器使用两个连续的三层感知器折叠操作将网格数据转变成完整的点云补全数据.实验结果表明,本文提出的点云补全网络能够较好地补全室内场景中缺失的家具结构形状,同时基于该网络的场景修复补全框架能够有效修复大型室内点云场景. 展开更多
关键词 室内场景 点云数据 类别-实例分割 编码器-解码器结构 修复补全
在线阅读 下载PDF
基于跨层次聚合网络的实时城市街景语义分割 被引量:2
3
作者 侯志强 程敏婕 +2 位作者 马素刚 屈敏杰 杨小宝 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1212-1226,共15页
随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战... 随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战,主要表现为不同类别的像素区分不够清晰、对于复杂场景结构的理解不够精准以及对小尺度对象或大尺度结构的分割不准确等问题。为此,本文提出一种基于跨层次聚合网络的实时城市街景语义分割算法。首先,在编码器末端设计了结合跨层次聚合的金字塔池化模块,用于高效提取多尺度上下文信息;其次,在编码器和解码器之间设计了跨层次聚合模块,通过引入通道注意力机制增强信息的表征能力,逐级聚合编码器阶段的特征以充分实现特征复用;最后,在解码器阶段设计了多尺度融合模块,在通道维度聚合全局信息与局部信息,促进深层特征与浅层特征的融合。将所提算法在两个通用的城市街景数据集上进行了验证。在一张RTX3090显卡上(TensorRT测速环境),本文算法在Cityscapes测试集以294 FPS的实时性达到73.0%mIoU的准确性,在更高分辨率的图像上以164 FPS的实时性达到75.8%mIoU的准确性;在CamVid数据集以239 FPS的实时性达到74.8%mIoU的准确性。实验结果表明,本文算法在准确性与实时性之间取得了有效平衡,对比其他算法的语义分割性能具有显著提升,为实时城市街景语义分割领域带来了新的突破。 展开更多
关键词 语义分割 卷积神经网络 城市街景 编码器-解码器结构 金字塔池化模块
在线阅读 下载PDF
跨尺度点匹配结合多尺度特征融合的图像配准
4
作者 欧卓林 吕晓琪 谷宇 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1090-1102,共13页
图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边... 图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边缘特征,且忽视了不同尺度上下文信息的关联。针对上述问题,本文提出了一种基于跨尺度点匹配结合多尺度特征融合的配准模型。首先,在模型的编码结构中引入跨尺度点匹配模块,增强对图像突出区域特征的表达以及对微小结构边缘细节特征的把握;然后,在解码结构中对多尺度特征进行融合,形成更全面的特征描述;最后,在多尺度特征融合模块中融入注意力模块,突出空间和通道的信息。在3个脑部核磁共振(Magnetic Resonance,MR)数据集上的实验结果表明,以OASIS-3数据集为例,本文方法的配准精确度相较于Affine、SyN、VoxelMorph以及CycleMorph等方法,本文方法分别提升了23.5%、12.4%、0.9%和2.1%;ASD值相较于各方法分别降低了1.074、0.434、0.043和0.076。本文提出的模型能更好地把握图像的特征信息,提升配准的精确度,对医学图像配准的发展具有重要意义。 展开更多
关键词 医学图像配准 编码器-解码器结构 特征加权 特征匹配 注意力机制
在线阅读 下载PDF
海洋涡旋智能检测研究进展
5
作者 徐广珺 施宇诚 +6 位作者 余洋 谢华荣 谢文鸿 刘婧媛 林夏艳 刘宇 董昌明 《海洋学研究》 CSCD 北大核心 2024年第3期38-50,共13页
海洋涡旋是一种常见的海洋现象,在全球海洋物质和能量的输运中起着重要作用。随着海洋研究技术手段的不断提升,各类海洋涡旋检测方法应运而生。传统涡旋检测方法应用广泛,但其过度依赖于专家经验设置阈值和持续的人工干预,存在检测误差... 海洋涡旋是一种常见的海洋现象,在全球海洋物质和能量的输运中起着重要作用。随着海洋研究技术手段的不断提升,各类海洋涡旋检测方法应运而生。传统涡旋检测方法应用广泛,但其过度依赖于专家经验设置阈值和持续的人工干预,存在检测误差较大、工作效率低以及全球普适性差等问题,难以适应复杂多变的海洋环境。当前人工智能快速发展,其在海洋涡旋智能检测中能够自动、快速地提取图像深层特征,有效解决海洋现象特征相似度高、几何差异大的问题。该文立足于当前海洋涡旋智能检测的发展现状,从编码器-解码器结构、全卷积神经网络、多尺度上下文方法和注意力机制等方面回顾了不同深度学习方法在海洋涡旋智能检测中的应用,以期为海洋涡旋研究提供一些启示和参考。 展开更多
关键词 海洋涡旋 人工智能 特征检测 深度学习 编码器-解码器结构 全卷积神经网络 多尺度上下文方法 注意力机制
在线阅读 下载PDF
基于双Transformer结构的多模态视频段落描述生成研究
6
作者 赵宏 张立军 《计算机工程与应用》 2025年第21期182-191,共10页
针对现有视频段落描述方法对视频中主要事件的关注度不足与多事件描述之间缺乏连贯性的问题,在现有编码器-解码器框架的基础上,提出了一种基于双Transformer结构的多模态视频段落描述模型。采用Faster-RCNN对视频中心帧目标进行细粒度... 针对现有视频段落描述方法对视频中主要事件的关注度不足与多事件描述之间缺乏连贯性的问题,在现有编码器-解码器框架的基础上,提出了一种基于双Transformer结构的多模态视频段落描述模型。采用Faster-RCNN对视频中心帧目标进行细粒度特征提取,由混合注意力结合全局视觉特征选择最具代表性的细粒度局部视觉特征,对视频中主要事件信息进行补充与增强,提高视频内容描述的准确性;提出在Transformer结构中增加存储模块与混合注意力模块,并设计了双Transformer结构,内部Transformer对事件内一致性进行建模,外部Transformer由混合注意力计算与当前事件最相关的状态建模事件间的一致性,结合内外部Transformer的输出对事件内容进行预测,提高生成描述语句的连贯性。在ActivityNet Captions数据集和YouCookII数据集上的实验结果表明,所提模型在BLEU-4、METEOR、ROUGE-L和CIDEr指标上相较于现有主流视频段落描述模型有明显提升,验证了模型的有效性。 展开更多
关键词 视频段落描述 编码器-解码器结构 细粒度局部视觉特征 双Transformer结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部