期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进U-Net网络的腺体细胞图像分割算法 被引量:11
1
作者 贝琛圆 于海滨 +2 位作者 潘勉 蒋洁 吕炳赟 《电子科技》 2019年第11期18-22,共5页
针对腺体图像在自动分割过程中由于多尺度目标和信息丢失影响导致准确率降低的问题,文中采用了一种引入注意力模块的全卷积神经网络模型。该模型遵循编码器-解码器结构,在编码网络中用空洞残差卷积层代替原有的普通卷积层,并添加空洞金... 针对腺体图像在自动分割过程中由于多尺度目标和信息丢失影响导致准确率降低的问题,文中采用了一种引入注意力模块的全卷积神经网络模型。该模型遵循编码器-解码器结构,在编码网络中用空洞残差卷积层代替原有的普通卷积层,并添加空洞金字塔池;再在解码网络中加入注意力模块,使模型输出高分辨率特征图,提高对多尺度目标的分割精度。实验结果表明,提出的网络模型参数少分割精度高,对腺体图像的平均分割精度高达89.7%,具有较好的鲁棒性。 展开更多
关键词 全卷积神经网络 编码器-解码器结构 空洞金字塔池 注意力模块 高分辨率特征图 分割精度高
在线阅读 下载PDF
跨尺度点匹配结合多尺度特征融合的图像配准
2
作者 欧卓林 吕晓琪 谷宇 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1090-1102,共13页
图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边... 图像配准在脑部疾病的计算机辅助诊疗和远程手术等方面具有重要作用。U-Net及其变体网络广泛应用于医学图像配准领域,在配准精确度和配准时间上取得了较好效果。然而,现有的配准模型在处理复杂图像形变时,难以学习到图像中微小结构的边缘特征,且忽视了不同尺度上下文信息的关联。针对上述问题,本文提出了一种基于跨尺度点匹配结合多尺度特征融合的配准模型。首先,在模型的编码结构中引入跨尺度点匹配模块,增强对图像突出区域特征的表达以及对微小结构边缘细节特征的把握;然后,在解码结构中对多尺度特征进行融合,形成更全面的特征描述;最后,在多尺度特征融合模块中融入注意力模块,突出空间和通道的信息。在3个脑部核磁共振(Magnetic Resonance,MR)数据集上的实验结果表明,以OASIS-3数据集为例,本文方法的配准精确度相较于Affine、SyN、VoxelMorph以及CycleMorph等方法,本文方法分别提升了23.5%、12.4%、0.9%和2.1%;ASD值相较于各方法分别降低了1.074、0.434、0.043和0.076。本文提出的模型能更好地把握图像的特征信息,提升配准的精确度,对医学图像配准的发展具有重要意义。 展开更多
关键词 医学图像配准 编码器-解码器结构 特征加权 特征匹配 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部