期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于特征辨识和变分自编码器网络的工商业空调负荷辨识 被引量:2
1
作者 谭伟涛 姚冰峰 +4 位作者 郭大琦 马闯 麻吕斌 王朝亮 林振智 《电力自动化设备》 EI CSCD 北大核心 2024年第12期61-68,共8页
空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法。针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方... 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法。针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量。提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类。针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算。以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性。算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获取用户的用电设备信息和用电行为信息的条件下准确辨识用户空调负荷功率,为量化空调负荷参与需求响应的可调潜力提供了基础。 展开更多
关键词 空调负荷 工商业用户 负荷辨识 局部加权线性拟合 OPTICS算法 变分自编码器网络
在线阅读 下载PDF
基于深度自编码器网络的人脸特征点定位方法 被引量:2
2
作者 梁洋洋 陈宇 杨健 《计算机应用与软件》 CSCD 2016年第9期139-142,共4页
使用深度学习网络技术的人脸特征点定位方法已经取得了比较突出的效果。然而,人脸图像由于姿态、表情、光照、遮挡等变化而具有复杂多样性,因此数目较多的人脸特征点(超过50个特征点)定位依然有很大的挑战性。设计了三层级联的自编码器... 使用深度学习网络技术的人脸特征点定位方法已经取得了比较突出的效果。然而,人脸图像由于姿态、表情、光照、遮挡等变化而具有复杂多样性,因此数目较多的人脸特征点(超过50个特征点)定位依然有很大的挑战性。设计了三层级联的自编码器网络,并通过由粗到精的方法对多数目的人脸特征点进行定位。第一层网络以整张人脸图像为输入,直接估计人脸轮廓和部件位置,从而将特征点分成三部分(眼眉鼻,嘴巴和人脸轮廓)进行下一步定位;之后的两层网络分别对各部件特征点进行估计求精。在LFPW、HELEN数据库上的实验表明,该方法能够提高人脸特征点定位的准确性和鲁棒性。 展开更多
关键词 人脸特征点定位 深度学习 编码器网络 逐步求精
在线阅读 下载PDF
基于深度自编码器网络的逆变器开关管开路故障诊断 被引量:2
3
作者 宋保业 鲁朋 许琳 《山东科技大学学报(自然科学版)》 CAS 北大核心 2023年第6期117-128,共12页
逆变器开关管的开路故障是影响逆变器系统安全、可靠运行的关键问题,为此研究了基于深度自编码器网络的逆变器开关管开路故障诊断。首先,给出了逆变器开关管开路故障的模型分析和故障编码,并通过仿真实验平台采集了不同开路故障情况下... 逆变器开关管的开路故障是影响逆变器系统安全、可靠运行的关键问题,为此研究了基于深度自编码器网络的逆变器开关管开路故障诊断。首先,给出了逆变器开关管开路故障的模型分析和故障编码,并通过仿真实验平台采集了不同开路故障情况下的原始故障信号数据。为避免人工进行网络结构设计的繁冗工作,提出一种自编码器网络的规则化设计方法。该方法能够快速确定隐含层神经元的数量和网络深度,利用故障数据自动学习开关管的故障特征,实现端到端的智能故障诊断。对比实验表明,提出的自编码器网络能够自动挖掘故障信号中的关键特征信息,对不同类型的故障信号数据均能得到稳定的故障识别率,验证了所提方法的有效性和优越性。 展开更多
关键词 深度神经网络 编码器网络 逆变器 开关管 开路故障诊断
在线阅读 下载PDF
基于堆叠自编码器神经网络的复合电磁检测铁磁性双层套管腐蚀缺陷分类识别方法 被引量:4
4
作者 张曦郁 李勇 +1 位作者 闫贝 敬好青 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2018年第1期72-78,共7页
铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效... 铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效率的重要因素。针对这一情况,将脉冲远场涡流和脉冲涡流技术相结合,提出了基于堆叠自编码器神经网络的分类方法。通过仿真和实验选取合适特征量作为输入层,实现了内管外壁腐蚀、外管内壁腐蚀和外管外壁腐蚀的分类,实验整体预判精度可达97.5%,结果表明该方法可对双层套管腐蚀缺陷缺陷实施高效、高精度分类识别。 展开更多
关键词 亚表面腐蚀缺陷 分类识别 铁磁性双层套管 脉冲远场涡流检测 脉冲涡流检测 堆叠自编码器神经网络
在线阅读 下载PDF
基于多尺度注意力轻量化网络的信道状态信息反馈方法
5
作者 刘庆利 谢佳骏 《电讯技术》 北大核心 2025年第9期1363-1372,共10页
针对大规模多输入多输出系统中信道状态信息在反馈时重构精度低、复杂度高的问题,提出了一种基于注意力机制的反馈方法。首先,考虑到信道状态信息矩阵数据分布特点,采用一种高效多尺度注意力模块提取信道状态信息矩阵局部和全局的特征,... 针对大规模多输入多输出系统中信道状态信息在反馈时重构精度低、复杂度高的问题,提出了一种基于注意力机制的反馈方法。首先,考虑到信道状态信息矩阵数据分布特点,采用一种高效多尺度注意力模块提取信道状态信息矩阵局部和全局的特征,并关注重要数据点的分布,提升网络模型的特征学习能力。其次,使用增强的可重参数化的卷积替代普通的卷积核,提升卷积对于局部特征的提取能力,使整个神经网络自编码器在保持轻量化的基础上达到更高的压缩重构精度。仿真结果表明,与轻量化网络CRNet和ACRNet-1x相比,所提出的网络模型在复杂度方面分别平均降低了19%和5%,重构精度分别平均提高了3%和8%,同时展现出了更好的鲁棒性。 展开更多
关键词 大规模MIMO 信道状态信息反馈 神经网络编码器 高效多尺度注意力 轻量化网络
在线阅读 下载PDF
基于SURF特征的栈式自编码网络人脸对齐算法 被引量:2
6
作者 崔凯 才华 +1 位作者 刘广文 刘智 《液晶与显示》 CAS CSCD 北大核心 2018年第3期254-260,共7页
人脸对齐是人脸识别系统中的一个核心部分,定位的准确性和定位速度直接影响到人脸识别的效果。人脸图像存在不同姿态、不同表情、不同光照条件等因素的影响,真实场景下的人脸对齐成为一个难题。本文提出了一种基于SURF特征的栈式自编码... 人脸对齐是人脸识别系统中的一个核心部分,定位的准确性和定位速度直接影响到人脸识别的效果。人脸图像存在不同姿态、不同表情、不同光照条件等因素的影响,真实场景下的人脸对齐成为一个难题。本文提出了一种基于SURF特征的栈式自编码网络人脸对齐方法,首先通过粗糙定位网络找到近似人脸特征点,并提取局部的SURF特征,输入到局部细化网络,通过级联结构,进一步精确化人脸特征点的具体位置。最后,在人脸数据集AFLW和HELEN上与近几年的对齐方法进行对比实验,平均错误率8.80%,i5四核CPU,2.3Hz主频硬件平台下计算时间7.6ms。我们的人脸对齐方法在真实场景下(包括单人和多人)具有较好的鲁棒性,可以实现准确定位。 展开更多
关键词 SURF特征 人脸对齐 编码器网络
在线阅读 下载PDF
基于门控位置编码的壁画图像多级色彩还原
7
作者 徐志刚 张创 《计算机应用》 CSCD 北大核心 2024年第9期2931-2937,共7页
近年来,壁画图像的色彩还原研究已成为壁画文物保护和展示领域的一个热点问题。针对壁画色彩还原面临的整体特征信息难以有效提取和保持,局部色彩还原易出现假色以及色彩溢出等问题,提出基于门控位置编码的壁画图像多级色彩还原方法。首... 近年来,壁画图像的色彩还原研究已成为壁画文物保护和展示领域的一个热点问题。针对壁画色彩还原面临的整体特征信息难以有效提取和保持,局部色彩还原易出现假色以及色彩溢出等问题,提出基于门控位置编码的壁画图像多级色彩还原方法。首先,构建基于全局特征约束的编码器网络,并通过改进的多核多值池化算法提取图像的全局特征梯度作为下采样取值标准以建立壁画图像特征金字塔,从而减少壁画图像在特征编码过程中的整体特征损失;其次,为准确还原壁画图像的局部色彩信息,设计基于门控位置编码的色彩迁移模块,该模块通过约束空间域中内容特征与色彩特征之间相似性核的学习,构建色彩特征在待还原壁画图像中的准确映射,从而减少还原图像中的假色现象与色彩溢出。实验结果表明,该方法所生成的壁画还原图像相较于AdaIN(Adaptive Instance Normalization)、AST(ArbitraryStyleTransfer)等对比方法所生成的壁画还原图像,NIQE(NaturalImageQuality Evaluator)和PIQE(Perception based Image Quality Evaluator)都取得了最优的结果。可见,所提方法能有效还原壁画色彩信息并保持待还原壁画图像的整体结构纹理特征。 展开更多
关键词 编码器-解码器网络 壁画图像 色彩还原 全局特征 位置编码
在线阅读 下载PDF
深度学习的用户数据自监督安全防御
8
作者 喻佳 《现代电子技术》 北大核心 2025年第20期30-34,共5页
为应对复杂多变的数据攻击模式,实时处理数据流并提升安全防御能力,提出一种基于深度学习的用户数据自监督安全防御方法。构建用户数据安全防御模型,结合深度学习和自监督学习技术,并采用变分自编码器中的编码器网络和解码器网络进行数... 为应对复杂多变的数据攻击模式,实时处理数据流并提升安全防御能力,提出一种基于深度学习的用户数据自监督安全防御方法。构建用户数据安全防御模型,结合深度学习和自监督学习技术,并采用变分自编码器中的编码器网络和解码器网络进行数据处理,识别用户数据的异常攻击,计算用户数据标准差,评估数据风险等级,再依据数据风险评估结果实现用户数据安全防御。以江西省某高校学院教学管理学生成绩数据为基础数据集,对所提方法的防御效果进行检测。实验结果表明:该方法能够有效应对低、中、高三种攻击强度下的学生用户数据,确保学生成绩数据的完整性;在不同异常数据量下,防御率均能保持在96%以上,数据泄露风险在1.67%以下,安全性较高,防御能力波动低于2%。所提方法有助于推动数据安全防御领域的智能化发展。 展开更多
关键词 用户数据 深度学习 自监督 安全防御 编码器网络 异常攻击识别 数据风险等级评估
在线阅读 下载PDF
用于红外与可见光图像融合的注意力残差密集融合网络 被引量:11
9
作者 陈广秋 温奇璋 +2 位作者 尹文卿 段锦 黄丹丹 《电子测量与仪器学报》 CSCD 北大核心 2023年第8期182-193,共12页
为了解决当前红外与可见光图像融合算法中易出现场景信息缺失、目标区域细节模糊、融合图像不自然等问题,提出一种用于红外与可见光图像融合的注意力残差密集融合网络(ARDFusion)。本文整体架构是一种自编码器网络,首先,利用存在最大池... 为了解决当前红外与可见光图像融合算法中易出现场景信息缺失、目标区域细节模糊、融合图像不自然等问题,提出一种用于红外与可见光图像融合的注意力残差密集融合网络(ARDFusion)。本文整体架构是一种自编码器网络,首先,利用存在最大池化层的编码器对源图像进行多尺度特征提取,然后,利用注意力残差密集融合网络分别对多个尺度的特征图进行融合,网络中的残差密集块可以连续存储特征并且最大程度地保留各层特征信息,注意力机制可以突出目标信息并获取更多与目标、场景有关的细节信息。最后,将融合后的特征输入到解码器中,通过上采样和卷积层对特征进行重构,得到融合图像。本文提出了一种用于红外与可见光图像融合的注意力残差密集融合网络,实验结果表明,较已有文献的其他典型融合算法,具有较好的融合效果,能够更好地保留可见光图像中的光谱特性且红外目标显著,并在主观评价和客观评价方面都取得了较好的融合性能。 展开更多
关键词 红外与可见光图像融合 编码器网络 残差密集连接 注意力机制 光谱特性
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
10
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 变分模态分解 长短时记忆网络编码器 改进Transformer模型
在线阅读 下载PDF
基于卷积神经网络的道路检测方法 被引量:6
11
作者 朱振文 周莉 +1 位作者 刘建 陈杰 《计算机工程与设计》 北大核心 2017年第8期2287-2290,F0003,共5页
为提高道路检测的鲁棒性,优化高级辅助驾驶系统的性能,提出一种基于卷积神经网络的道路检测方法。采用编解码思想,用由卷积层和下采样层构成的编码器网络提取低尺度图像特征,其中下采样层是由最大池化层和卷积层构成,更好地保留图像边... 为提高道路检测的鲁棒性,优化高级辅助驾驶系统的性能,提出一种基于卷积神经网络的道路检测方法。采用编解码思想,用由卷积层和下采样层构成的编码器网络提取低尺度图像特征,其中下采样层是由最大池化层和卷积层构成,更好地保留图像边缘信息;用与编码器网络相对应的解码器网络将低尺度编码特征映射到原始图像尺度空间,实现像素级分类。在KITTI数据集上的实验结果验证了该方法的有效性和鲁棒性。 展开更多
关键词 道路检测 卷积神经网络 计算机视觉 编码器网络 码器网络
在线阅读 下载PDF
基于无监督多源数据特征解析的网络威胁态势评估 被引量:14
12
作者 杨宏宇 王峰岩 《通信学报》 EI CSCD 北大核心 2020年第2期143-154,共12页
针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量... 针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量的训练数据集输入V-G的网络集合层进行模型训练,并计算各层网络输出的重构误差。然后,通过输出层的三层变分自动编码器重构误差学习并获取训练异常阈值,使用包含异常网络流量的测试数据集测试分组威胁并统计每组测试的威胁发生概率。最后,根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值以获取网络威胁态势。仿真实验结果表明,所提方法对网络威胁具有较强的表征能力,能够有效直观地评估网络威胁的整体态势。 展开更多
关键词 无监督 多源数据特征解析 变分自动编码器-生成式对抗网络 威胁发生概率 威胁态势评估
在线阅读 下载PDF
基于山区大气电场演变特征与雷电定位数据的雷电临近预警方法 被引量:4
13
作者 齐玥 杨庆 +2 位作者 王科 胡逸 徐肖伟 《高电压技术》 EI CAS CSCD 北大核心 2024年第10期4760-4771,共12页
由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法... 由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法。通过分析典型高原山区不同雷暴发展情况下的大气电场演化特性,发现山区大气电场可作为雷电定位数据的补充源,充分表征雷云剧烈放电和雷暴临近发展的特征信息。在预警过程中,首先将大气电场形态学梯度提取的快速抖动、暂态突变特征与时空匹配的地闪活动特征输入堆叠稀疏自编码器网络模型,判断监测区域附近是否出现雷云放电迹象,再利用雷暴距离变化或者电场波形变化判断雷电活动的临近趋势,最后综合两者的结果完成半径15km监测区域的雷电活动短时预警。在2023年云南山区雷雨季节的雷暴算例分析中,通过双源数据共同提取的山区雷暴活动预警特征的有效识别,可以实现预警准确率为90%,约44%的警报提前时间不小于30 min。 展开更多
关键词 高原山区 大气电场特征 雷电定位数据 雷电临近预警 堆叠稀疏自编码器网络
在线阅读 下载PDF
基于多阶段优化的壁画图像色彩还原
14
作者 徐志刚 陈士成 朱红蕾 《计算机工程与应用》 CSCD 北大核心 2024年第2期162-170,共9页
敦煌壁画是中国最有价值和不可再生的文化遗产之一。而壁画图像的色彩复原对敦煌壁画的数字化保护和展示具有重要意义。为了解决褪色壁画图像色彩还原过程中出现的边缘伪影和色彩混叠问题,提出一种基于多阶段优化的壁画图像色彩还原方... 敦煌壁画是中国最有价值和不可再生的文化遗产之一。而壁画图像的色彩复原对敦煌壁画的数字化保护和展示具有重要意义。为了解决褪色壁画图像色彩还原过程中出现的边缘伪影和色彩混叠问题,提出一种基于多阶段优化的壁画图像色彩还原方法。该方法利用高斯核函数得到壁画图像的多尺度表示。同时,构建三个基于编码器-解码器的迁移子网来学习壁画图像多尺度表示的语义特征,在参考壁画和褪色壁画之间建立语义关联来恢复壁画颜色。采用由粗到细的优化策略,在各个阶段间构建跨尺度特征融合模块实现图像多尺度表示的特征融合,建立不同阶段间的特征依赖关系。通过多阶段逐步优化,实现壁画图像的色彩还原。通过对临摹壁画和真实壁画的实验表明,该方法能够较有效地消除噪声影响,在还原壁画色彩的同时能较好地保持褪变色壁画图像的边缘纹理信息。 展开更多
关键词 壁画图像 色彩还原 多阶段方法 注意力机制 编码器-解码器网络
在线阅读 下载PDF
基于双参考优化的壁画图像色彩还原
15
作者 徐志刚 张聪 《计算机工程》 CAS CSCD 北大核心 2024年第2期345-352,共8页
褪变色壁画图像的色彩还原研究可以促进壁画的保护和展示。壁画图像色彩还原旨在将退化壁画图像的色彩褪变区域还原为原有色彩。常规的基于单幅参考壁画图像的色彩还原方法难以选取与退化壁画图像相似的参考壁画图像,进而影响色彩还原... 褪变色壁画图像的色彩还原研究可以促进壁画的保护和展示。壁画图像色彩还原旨在将退化壁画图像的色彩褪变区域还原为原有色彩。常规的基于单幅参考壁画图像的色彩还原方法难以选取与退化壁画图像相似的参考壁画图像,进而影响色彩还原质量。为此,提出一种基于双参考优化的壁画图像色彩还原方法。采用双参考策略,即使用2幅参考壁画图像对退化壁画图像进行色彩还原,利用图像优化模块抑制褪变色壁画图像中普遍存在的噪声、划痕等多重退化,通过编码器-解码器网络编码提取壁画图像多尺度特征,并构建特征融合模块优化壁画图像的多尺度特征。采用双参考指导模块计算参考壁画图像与退化壁画图像的语义对应置信度,以实现图像区域间的相似性匹配,并实现2幅参考壁画图像的风格融合。在此基础上,利用融合特征实现退化壁画图像的色彩还原。实验结果表明,该方法可以较准确地还原退化壁画图像色彩,同时能较好保持壁画图像原有的边缘结构信息,并且使用无参考图像质量评估指标对各个方法的还原壁画图像进行客观评估,与对比方法相比,该方法在客观评估指标上最多可降低12.2%。 展开更多
关键词 褪变色图像 壁画图像 色彩还原 编码器-解码器网络 双参考优化方法
在线阅读 下载PDF
一种面向耳戴式设备的用户安全连续认证方法
16
作者 王勇 熊毅 +1 位作者 杨天宇 沈益冉 《计算机研究与发展》 EI CSCD 北大核心 2024年第11期3821-3834,共14页
耳戴式设备作为典型智能物联网边端感知设备应用场景众多,保护其合法用户隐私以及防止非法使用至关重要.针对当前耳戴式设备用户身份认证方法受输入界面、传感器成本以及设备功耗等限制导致安全性不足、普适性不高以及用户体验不佳等问... 耳戴式设备作为典型智能物联网边端感知设备应用场景众多,保护其合法用户隐私以及防止非法使用至关重要.针对当前耳戴式设备用户身份认证方法受输入界面、传感器成本以及设备功耗等限制导致安全性不足、普适性不高以及用户体验不佳等问题,提出一种基于耳戴式设备内置惯性测量单元的用户身份认证方法,该方法通过采集用户执行面部交互手势所产生的振动信号来提取用户特异性信息,并基于上述信息的智能分析实现多样化的隐式用户连续身份认证.为了提取精准可靠的用户特异性信息,提出了一种基于孪生网络的深度神经网络特征编码器,将同一用户的手势样本映射到特征空间中更近的位置,放大不同用户的手势样本之间的距离,实现用户特异性信息的有效编码.对于基于用户特异性信息的用户身份连续认证,提出了一种基于单类支持向量机超平面距离的加权投票策略,能够自适应地优化判别边界来更好地捕捉蕴含的特征和结构,根据超平面内外样本点与超平面的距离决定该样本的置信程度,以此设计加权投票实现认证.实验结果表明,所提方法在单次投票中实现了97.33%的认证准确率,7轮投票的连续认证后取得99.993%的认证准确率,优于对比的所有方法,无需密码的同时提供更流畅的用户体验和更高级别的安全性,具有较高的实际应用价值. 展开更多
关键词 智能物联网 耳戴式设备 用户连续认证 深度神经网络特征编码器 加权投票策略
在线阅读 下载PDF
基于双层解码的多轮情感对话生成模型 被引量:2
17
作者 罗红 陆海俊 +2 位作者 陈娟娟 慎煜杰 王丹 《计算机应用研究》 CSCD 北大核心 2024年第6期1778-1783,共6页
情感对话系统的成功取决于语言理解、情感感知和表达能力,同时面部表情和个性等也能提供帮助。然而,尽管这些信息对于多轮情感对话至关重要,但是现有系统既未能够充分利用多模态信息的优势,又忽略了上下文相关性的重要性。为了解决这个... 情感对话系统的成功取决于语言理解、情感感知和表达能力,同时面部表情和个性等也能提供帮助。然而,尽管这些信息对于多轮情感对话至关重要,但是现有系统既未能够充分利用多模态信息的优势,又忽略了上下文相关性的重要性。为了解决这个问题,提出了一种基于双层解码的多轮情感对话生成模型(MEDG-DD)。该模型利用异构的图神经网络编码器将历史对话、面部表情、情感流和说话者信息进行融合,以获得更加全面的对话上下文。然后,使用基于注意力机制的双层解码器,以生成与对话上下文相关的富含情感的言辞。实验结果表明,该模型能够有效地整合多模态信息,实现更为准确、自然且连贯的情感话语。与传统的ReCoSa模型相比,该模型在各项评估指标上均有显著的提升。 展开更多
关键词 图神经网络编码器 注意力机制 双层解码 对话生成
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
18
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
基于BERT的心血管医疗指南实体关系抽取方法 被引量:19
19
作者 武小平 张强 +1 位作者 赵芳 焦琳 《计算机应用》 CSCD 北大核心 2021年第1期145-149,共5页
实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专... 实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专病知识图谱实体关系抽取的专业数据集。基于该数据集,首先提出双向变形编码器卷积神经网络(BERT-CNN)模型以实现中文语料中的关系抽取,然后根据中文语义中主要以词而不是字为基本单位的特性,提出了改进的基于全词掩模的双向变形编码器卷积神经网络(BERT(wwm)-CNN)模型用于提升在中文语料中关系抽取的性能。实验结果表明,改进的BERT(wwm)-CNN在所构建的关系抽取数据集上准确率达到0.85,召回率达到0.80,F1值达到0.83,优于对比的基于双向变形编码器长短期记忆网络(BERT-LSTM)模型和BERT-CNN模型,验证了改进网络模型的优势。 展开更多
关键词 实体关系抽取 心血管疾病 双向变形编码器网络 卷积神经网络 知识图谱
在线阅读 下载PDF
基于多模态表示学习的阿尔兹海默症诊断算法 被引量:5
20
作者 樊连玺 刘彦北 +4 位作者 王雯 耿磊 吴骏 张芳 肖志涛 《计算机科学》 CSCD 北大核心 2021年第10期107-113,共7页
阿尔茨海默症是一种典型的涉及多种致病因素的神经系统退行性疾病。然而,阿尔茨海默症的病因尚不明确,病程不可逆转,且无治愈方法,因此其早期诊断和治疗一直是人们关注的重点。受试者的神经影像数据对于该疾病的诊断具有重要的辅助作用... 阿尔茨海默症是一种典型的涉及多种致病因素的神经系统退行性疾病。然而,阿尔茨海默症的病因尚不明确,病程不可逆转,且无治愈方法,因此其早期诊断和治疗一直是人们关注的重点。受试者的神经影像数据对于该疾病的诊断具有重要的辅助作用,而结合多个模态的数据可进一步提高诊断效果。目前,联合该疾病的多模态数据进行辅助诊断逐渐成为一个新兴的研究领域。在此提出了一种基于自编码器的多模态表示学习方法,用于阿尔茨海默症的诊断。首先将多个模态的数据进行初步融合,得到初级的共同表示;然后将其送入自编码器网络,学习隐空间中的共同表示;最后对隐空间中的共同表示进行分类,得到疾病的诊断结果。在国际公开ADNI数据集上,所提算法对患病和健康受试者的诊断准确率达到88.9%,与同类算法相比取得了最好的诊断效果。实验结果验证了所提算法对阿尔茨海默症诊断的有效性。 展开更多
关键词 阿尔兹海默症 疾病诊断 多模态融合 表示学习 编码器网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部