期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
图卷积增强多路解码的实体关系联合抽取模型 被引量:9
1
作者 乔勇鹏 于亚新 +3 位作者 刘树越 王子腾 夏子芳 乔佳琪 《计算机研究与发展》 EI CSCD 北大核心 2023年第1期153-166,共14页
从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑... 从无结构化自然语言文本中抽取实体关系三元组是构建大型知识图谱中最为关键的一步,但现有研究仍存在3方面问题:1)忽略文本中因多个三元组共享同一实体而产生的实体关系重叠问题;2)当前以编码器-解码器为基础的联合抽取模型未充分考虑文本语句词之间的依赖关系;3)部分三元组序列过长导致误差累积与传播,影响实体关系抽取的精度和效率.基于此,提出基于图卷积增强多路解码的实体关系联合抽取模型(graph convolution-enhanced multi-channel decoding joint entity and relation extraction model,GMCD-JERE).首先,基于BiLSTM作为模型编码器,强化文本中词的双向特征融合;其次,通过图卷积多跳特征融合句中词之间的依赖关系,提高关系抽取准确性;此外,改进传统模型按三元组先后顺序的解码机制,通过多路解码三元组机制,解决实体关系重叠问题,同时缓解三元组序列过长造成误差累积、传播的影响;最后,实验选用当前3个主流模型进行性能验证,在NYT(New York times)数据集上结果表明在精确率、召回率和F1这3个指标上分别提升了4.3%,5.1%,4.8%,同时在WebNLG(Web natural language generation)数据集上验证以关系为开始的抽取顺序. 展开更多
关键词 关系抽取 编码器–解码器 多路解码 关系重叠 图卷积神经网络
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
2
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
基于双流融合网络的输送带跑偏检测方法
3
作者 杨志方 张立亚 +2 位作者 郝博南 刘渊 赵青 《煤炭科学技术》 EI CAS CSCD 北大核心 2023年第S02期259-267,共9页
传统输送带跑偏检测方法中,接触式检测技术成本高,非接触式检测技术则精度低。随着人工智能技术的发展,虽然基于卷积神经网络的方法可以有效提高检测精度,但受限于卷积操作本身局部运算特性的限制,仍存在对长距离、全局信息感知不足等问... 传统输送带跑偏检测方法中,接触式检测技术成本高,非接触式检测技术则精度低。随着人工智能技术的发展,虽然基于卷积神经网络的方法可以有效提高检测精度,但受限于卷积操作本身局部运算特性的限制,仍存在对长距离、全局信息感知不足等问题,很难再提升在输送带边缘检测上的精度。为解决上述问题,(1)通过将传统卷积神经网络的卷积对局部特征的提取能力与Transformer结构对全局、长距离信息感知能力相结合,提出了一种全局与局部信息相互融合的双流输送带边缘检测网络模型(Dual-Flow Transformer Network,DFTNet),能够较好地提高输送带边缘检测精度并抑制输送带图像噪声和背景的干扰;(2)通过设计卷积神经网络(Convolutional Neural Network,CNN)和转换器Transformer特征融合模块,形成双流编码器–解码器结构,利用结构上的巧妙设计,可以更好地融合全局上下文信息,避免了Transformer结构在大规模数据集上预训练,可以灵活调节网络结构;(3)通过从实际工业场景中所采集到多场景的运输机输送带图片,构建了包含5种不同场景下多角度、不同位置的输送带输送带数据集。研究结果表明,双流融合网络DFTNet综合性能最佳,均交并比mIou达91.08%,准确率ACC达99.48%,平均精确率m Precision达91.88%,平均召回率mRecall达96.22%,相比纯卷积神经网络HRNet分别提升了25.36%、0.29%、17.70%与29.46%,相比全卷积神经网络(Fully Convolutional Networks,FCN)分别提升了29.5%、0.32%、24.77%与34.13%,在参数量、计算速度上均有较大提升。同时,处理图像帧率达53.07 fps,满足工业中实时性的要求,具有较大实用价值。 展开更多
关键词 输送带跑偏 边缘检测 神经网络 编码器–解码器 图像分割
在线阅读 下载PDF
Frame-bitrate-change based steganography for voice-over-IP 被引量:4
4
作者 刘进 田晖 周可 《Journal of Central South University》 SCIE EI CAS 2014年第12期4544-4552,共9页
Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on fr... Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication. 展开更多
关键词 covert communication steganography multi-rate speech codec voice-over-IP(VOIP)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部