期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
变维自适应交互式多模型跟踪算法 被引量:1
1
作者 毛少锋 冯新喜 +2 位作者 刘玉磊 危璋 郑晓梅 《电光与控制》 北大核心 2015年第2期36-40,45,共6页
针对传统的交互式多模型(IMM)算法通常采用相同维数的模型进行滤波,存在较大的模型误差以及当前统计模型(CS)中的参数需要合理设定的问题,提出一种变维自适应交互式多模型(AIMM)跟踪算法。该算法首先利用维数变换,将不同维数的模型转换... 针对传统的交互式多模型(IMM)算法通常采用相同维数的模型进行滤波,存在较大的模型误差以及当前统计模型(CS)中的参数需要合理设定的问题,提出一种变维自适应交互式多模型(AIMM)跟踪算法。该算法首先利用维数变换,将不同维数的模型转换为统一的维数进行交互滤波,使之适用于一般的机动目标,减少模型跟踪误差;然后通过引入由残差信息定义的调整因子对CS模型中的参数自适应调整,提高模型与实际运动模式的匹配程度;最后将参数调整后的CS模型反馈到变维IMM算法中,来改善跟踪性能。仿真实验表明,与传统变维IMM算法相比,文中所提算法在有效跟踪机动目标的同时,提高了目标的跟踪精度。 展开更多
关键词 机动目标跟踪 维数变换 交互式多模型算法 调整因子
在线阅读 下载PDF
SELF-DEPENDENT LOCALITY PRESERVING PROJECTION WITH TRANSFORMED SPACE-ORIENTED NEIGHBORHOOD GRAPH
2
作者 乔立山 张丽梅 孙忠贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期261-268,共8页
Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in da... Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results. 展开更多
关键词 graphic methods Laplacian transforms unsupervised learning dimensionality reduction locality preserving projection
在线阅读 下载PDF
A Parallel Integration Method of Cooperative Target-Localization and Cooperative Self-localization
3
作者 WANG Leigang KONG Depei +1 位作者 ZHOU Jihang WANG Jianlu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期231-238,共8页
When a group of mobile agents track a target,they can locate themselves and the target in a cooperative manner.To maximize the group advantage,a parallel integration strategy of cooperative target-localization(CTL)and... When a group of mobile agents track a target,they can locate themselves and the target in a cooperative manner.To maximize the group advantage,a parallel integration strategy of cooperative target-localization(CTL)and cooperative self-localization(CSL)is designed.Firstly,a global cost function containing the agents’positions and the target’s position is established.Secondly,along with the agents’positions being re-estimated during CTL,the Utransform is employed to propagate the error covariance of the position estimations among the agents.The simulation results show that,the proposal exploits more information for locating the target and the agents than the cases where CTL and CSL run separately,and the global optimal position estimations of the agents and the target are obtained. 展开更多
关键词 cooperative self-localization cooperative target-localization non-classical multi-dimensional scaling majoring function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部