针对基于稀疏不变性假设的单帧超分辨率(SR)算法的局限性,提出一种利用相似最近邻(ANN)统计预测模型的单帧SR算法。首先,利用相似最近邻思想,通过波尔茨曼机捕捉HR字典与LR字典对稀疏模式之间的依赖关系,建立统计预测模型;然后,根据LR块...针对基于稀疏不变性假设的单帧超分辨率(SR)算法的局限性,提出一种利用相似最近邻(ANN)统计预测模型的单帧SR算法。首先,利用相似最近邻思想,通过波尔茨曼机捕捉HR字典与LR字典对稀疏模式之间的依赖关系,建立统计预测模型;然后,根据LR块与HR块相关的最小均方误差(MMSE)计算网络参数,获得它们的依赖关系;最后,利用多层前向神经网络提取字典元素内积,通过计算重叠局部块预测值的均值来重建图像。利用峰值信噪比PSNR和结构相似性度量SSIM评估实验结果,实验结果表明,提出的算法在视觉效果和数值标准方面大多优于其他算法,在选择合适参数情况下,峰值信噪比至少提高0.2 d B。展开更多
利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应...利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应用多因子回归集合、交叉检验集合、逐月滚动集合,建立了针对中国冬季气温的逐月滚动预测模型,并利用该模型对2010/2011—2014/2015年冬季气温进行了独立预测试验和检验。结果表明,综合运用多种集合可提高短期气候客观定量预测的可行性和稳定性。多因子回归集合能增加可预测站点数,交叉检验集合可减少因统计关系不稳定而产生的对预报效果的影响,逐月滚动集合的应用不仅增加了可预测站点数,而且使预测效果更加稳定。本文建立的预测模型可对中国冬季气温进行长时效的预测,且有一定的预报技巧,对实际的季节预测业务有重要应用价值。展开更多
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E...This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.展开更多
文摘针对基于稀疏不变性假设的单帧超分辨率(SR)算法的局限性,提出一种利用相似最近邻(ANN)统计预测模型的单帧SR算法。首先,利用相似最近邻思想,通过波尔茨曼机捕捉HR字典与LR字典对稀疏模式之间的依赖关系,建立统计预测模型;然后,根据LR块与HR块相关的最小均方误差(MMSE)计算网络参数,获得它们的依赖关系;最后,利用多层前向神经网络提取字典元素内积,通过计算重叠局部块预测值的均值来重建图像。利用峰值信噪比PSNR和结构相似性度量SSIM评估实验结果,实验结果表明,提出的算法在视觉效果和数值标准方面大多优于其他算法,在选择合适参数情况下,峰值信噪比至少提高0.2 d B。
文摘利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应用多因子回归集合、交叉检验集合、逐月滚动集合,建立了针对中国冬季气温的逐月滚动预测模型,并利用该模型对2010/2011—2014/2015年冬季气温进行了独立预测试验和检验。结果表明,综合运用多种集合可提高短期气候客观定量预测的可行性和稳定性。多因子回归集合能增加可预测站点数,交叉检验集合可减少因统计关系不稳定而产生的对预报效果的影响,逐月滚动集合的应用不仅增加了可预测站点数,而且使预测效果更加稳定。本文建立的预测模型可对中国冬季气温进行长时效的预测,且有一定的预报技巧,对实际的季节预测业务有重要应用价值。
文摘This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.