非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地...非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PSTimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据.展开更多
文摘综合化航空电子系统(Integrated Modular Avionics, IMA)是一类典型的安全关键系统,具有分布式、异构、计算资源和物理资源强耦合等特征。随着IMA系统趋于复杂化和智能化,系统的功能越来越多地采用软件来实现,如何对这类复杂软件进行建模并自动生成代码成为一个重要挑战。文中提出了一种基于AADL(Architecture Analysis and Design Language)的综合化航空电子系统代码生成方法。首先,提出HMC4ARINC653(Heterogeneous Model Container for ARINC653)属性集扩展,使其具备描述IMA软件架构、异构功能行为和非功能属性的能力;其次,提出IMA模型到C代码及ARINC653系统配置文件的映射规则,并遵守MISRA C安全编码规范,生成的代码能够在ARINC653操作系统上部署并仿真执行;最后,设计并实现了相应的原型工具,以ARINC653操作系统和工业界实际案例,验证了所提方法和工具的有效性。
文摘非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PSTimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据.