期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进MPE和K-medoids的变压器绕组松动故障诊断
1
作者
马宏忠
薛健侗
+2 位作者
倪一铭
万可力
迮恒鹏
《高压电器》
2025年第9期73-80,共8页
为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进...
为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进行特征提取,以减少MPE算法中参数设置对故障类型识别精度的影响,然后通过K-medoids聚类算法诊断变压器绕组松动故障,以完成故障的分类识别。对某10 kV变压器的绕组松动故障模拟实验结果表明,绕组不同状态下变压器振动信号的MPE值经PSO参数优化后存在明显差异,诊断效果优于传统经验设置参数的MPE算法,且稳定性得到提高。
展开更多
关键词
变压器
绕组松动诊断
粒子群优化的MPE算法
特征提取
K-medoids算法
在线阅读
下载PDF
职称材料
题名
基于改进MPE和K-medoids的变压器绕组松动故障诊断
1
作者
马宏忠
薛健侗
倪一铭
万可力
迮恒鹏
机构
河海大学电气与动力工程学院
出处
《高压电器》
2025年第9期73-80,共8页
基金
国家自然科学基金项目(51577050)。
文摘
为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进行特征提取,以减少MPE算法中参数设置对故障类型识别精度的影响,然后通过K-medoids聚类算法诊断变压器绕组松动故障,以完成故障的分类识别。对某10 kV变压器的绕组松动故障模拟实验结果表明,绕组不同状态下变压器振动信号的MPE值经PSO参数优化后存在明显差异,诊断效果优于传统经验设置参数的MPE算法,且稳定性得到提高。
关键词
变压器
绕组松动诊断
粒子群优化的MPE算法
特征提取
K-medoids算法
Keywords
transformer
diagnosis of winding looseness
particle swarm optimized MPE algorithm
feature extraction
K-medoids algorithm
分类号
TM41 [电气工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进MPE和K-medoids的变压器绕组松动故障诊断
马宏忠
薛健侗
倪一铭
万可力
迮恒鹏
《高压电器》
2025
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部