期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法
被引量:
12
1
作者
马旭聪
唐文虎
+1 位作者
牛哲文
辛妍丽
《高压电器》
CAS
CSCD
北大核心
2023年第10期120-128,共9页
变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种...
变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法,收集了变压器故障样本并搭建多种故障诊断模型进行对比以验证所提出方法的有效性。经过模型训练和验证,使用孪生卷积网络在非均衡数据集下进行变压器绕组变形故障识别正确率达到90%左右,高于卷积网络(CNN)、支持向量机(SVM)等其他方法的正确率。
展开更多
关键词
孪生网络
电力变压器
绕组变形故障
非均衡数据集
在线阅读
下载PDF
职称材料
题名
非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法
被引量:
12
1
作者
马旭聪
唐文虎
牛哲文
辛妍丽
机构
华南理工大学电力学院
出处
《高压电器》
CAS
CSCD
北大核心
2023年第10期120-128,共9页
基金
国家自然科学基金资助项目(51977082)
广东电网有限责任公司科技项目(GDKJXM20190005)。
文摘
变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法,收集了变压器故障样本并搭建多种故障诊断模型进行对比以验证所提出方法的有效性。经过模型训练和验证,使用孪生卷积网络在非均衡数据集下进行变压器绕组变形故障识别正确率达到90%左右,高于卷积网络(CNN)、支持向量机(SVM)等其他方法的正确率。
关键词
孪生网络
电力变压器
绕组变形故障
非均衡数据集
Keywords
twin network
power transformer
winding deformation
unbalanced data set
分类号
TM407 [电气工程—电器]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法
马旭聪
唐文虎
牛哲文
辛妍丽
《高压电器》
CAS
CSCD
北大核心
2023
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部