The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical mode...The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical model of nuclear waste disposal in unsaturated quartz aggregate rock mass with laboratory scale, two 4-year computation cases were designed: 1) The porosity and permeability of rock mass are functions of the pressure solution; 2) The porosity and the permeability are constants. Calculation results show that the magnitude and distribution of stresses in the rock mass of these two calculation cases are roughly the same. And, the porosity and the permeability decrease to 43%-54% and 4.4%-9.1% of their original values after case 1 being accomplished; but the negative pore water pressures in cases 1 and 2 are respectively 1.0-1.25 and 1.0-1.1 times of their initial values under the action of nuclear waste. Case 1 exhibits the obvious effect of pressure solution.展开更多
基金Project(2010CB732101)supported by the National Key Basic Research and Development Program of ChinaProjects(51079145,51379201)supported by the National Natural Science Foundation of China
文摘The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical model of nuclear waste disposal in unsaturated quartz aggregate rock mass with laboratory scale, two 4-year computation cases were designed: 1) The porosity and permeability of rock mass are functions of the pressure solution; 2) The porosity and the permeability are constants. Calculation results show that the magnitude and distribution of stresses in the rock mass of these two calculation cases are roughly the same. And, the porosity and the permeability decrease to 43%-54% and 4.4%-9.1% of their original values after case 1 being accomplished; but the negative pore water pressures in cases 1 and 2 are respectively 1.0-1.25 and 1.0-1.1 times of their initial values under the action of nuclear waste. Case 1 exhibits the obvious effect of pressure solution.