期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
具有结果多样性的近似子图查询算法
1
作者 洪佳明 黄云 +1 位作者 刘少鹏 印鉴 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期960-972,共13页
针对大型图中的各种top k近似子图查询算法存在的顶点重叠度高、无法满足多样性匹配结果输出等问题,提出具有最大顶点覆盖集的多样性近似子图查询算法.该算法建立基于近邻关系和基于区域划分的双重索引,并为相互关系紧密的同标号顶点建... 针对大型图中的各种top k近似子图查询算法存在的顶点重叠度高、无法满足多样性匹配结果输出等问题,提出具有最大顶点覆盖集的多样性近似子图查询算法.该算法建立基于近邻关系和基于区域划分的双重索引,并为相互关系紧密的同标号顶点建立簇索引.在图查询过程中,利用近邻特征为查询图中的每个顶点快速筛选出满足局部匹配要求的候选顶点集,并从不同区域找到多个满足要求的近似匹配子图,避免了查询结果间的高重复率.同时,基于区域和同标号近邻簇的划分,优先查找属于不同划分或不同簇顶点的匹配,减少了不同区域划分间的交互,提高了查询的效率.在大量数据集上的实验结果验证了该算法在查询效率和结果多样性等方面的有效性. 展开更多
关键词 子图查询 近似查询 结果多样性 顶点覆盖集
在线阅读 下载PDF
大图中多样化Top-k模式挖掘算法研究 被引量:1
2
作者 何宇昂 王欣 沈玲珍 《计算机科学》 CSCD 北大核心 2024年第5期70-84,共15页
频繁模式挖掘(Frequent Pattern Mining,FPM)是图数据挖掘领域的一项重要任务。该任务的目标是从图数据中找到出现频次大于给定阈值的所有模式。近年来,随着社交网络等大规模图数据的涌现,单一大图上的FPM问题受到广泛关注,并得到了较... 频繁模式挖掘(Frequent Pattern Mining,FPM)是图数据挖掘领域的一项重要任务。该任务的目标是从图数据中找到出现频次大于给定阈值的所有模式。近年来,随着社交网络等大规模图数据的涌现,单一大图上的FPM问题受到广泛关注,并得到了较为充分的研究,取得了一系列研究成果。然而,已有技术大都存在着计算成本高、挖掘结果理解困难以及并行计算难等问题。针对上述问题,文中提出了一种从大规模图数据中挖掘多样化top-k模式的方法。首先设计了一个多样化函数,用于度量模式集合的多样性;随后设计了一种面向分布式图数据,具有提前终止特性的分布式挖掘算法DisTopk,以实现多样化top-k模式高效挖掘。在真实图数据和合成图数据上进行了大量实验,结果表明,与传统分布式挖掘算法相比,DisTopk算法能更高效地挖掘多样化top-k模式。 展开更多
关键词 频繁模式挖掘 Top-k模式 结果多样性 分布式挖掘 提前终止
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部