期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
TriCh-LKRepNet:融合三通道映射与结构重参数化的大核卷积恶意代码分类网络 被引量:4
1
作者 李思聪 王坚 +1 位作者 宋亚飞 王硕 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2331-2340,共10页
随着网络威胁的日益严峻,恶意代码的检测与分类变得尤为关键.传统分析方法依赖手动特征提取,不仅耗时且难以跟上恶意代码的快速变异.相比之下,深度学习技术在恶意代码分类方面展现出巨大潜力.然而,模型复杂度和资源消耗仍是实际部署的难... 随着网络威胁的日益严峻,恶意代码的检测与分类变得尤为关键.传统分析方法依赖手动特征提取,不仅耗时且难以跟上恶意代码的快速变异.相比之下,深度学习技术在恶意代码分类方面展现出巨大潜力.然而,模型复杂度和资源消耗仍是实际部署的难题.本研究提出了TriCh-LKRepNet(Triple-Channel Large Kernel Reparameterisation Network),该网络专注于轻量化设计,旨在确保检测性能的同时降低计算和内存需求.通过提出的三通道映射技术,将恶意代码的多维信息有效转换为图像通道,增强了特征的区分性.结合卷积神经网络(Convolutional Neural Networks,CNN)和Transformer的优势,设计了一个高效的深度学习架构,并通过重参数化技术优化了连接路径,以降低内存消耗并提升运行效率.此外,引入的线性训练时间过参数化和大卷积核技术进一步降低了模型的参数量和计算负担.通过实验证明,TriCh-LKRepNet在提升恶意代码分类精度的同时实现了模型的轻量化,与现有技术相比,展现出更佳的性能和更广泛的应用潜力,特别是在资源受限和需要实时检测的环境中,提供了一种有效的解决方案. 展开更多
关键词 恶意代码分类 恶意代码可视 结构重参数化 大卷积核 汇编信息 语义关系
在线阅读 下载PDF
融合结构重参数化变换的气体泄漏红外检测 被引量:2
2
作者 庄宏 张印辉 +1 位作者 何自芬 曹辉柱 《光子学报》 EI CAS CSCD 北大核心 2024年第1期187-201,共15页
针对常规工业气体泄漏检测装置需泄漏扩散到一定范围并与传感器接触时才能响应的不足,提出一种融合结构重参数化变换的红外非接触式检测网络模型GRNet。GRNet模型采用Mosaic-Gamma变换的预处理方法增加泄漏样本数量并提高图像对比度以... 针对常规工业气体泄漏检测装置需泄漏扩散到一定范围并与传感器接触时才能响应的不足,提出一种融合结构重参数化变换的红外非接触式检测网络模型GRNet。GRNet模型采用Mosaic-Gamma变换的预处理方法增加泄漏样本数量并提高图像对比度以增强模型的鲁棒性;通过K-means聚类分析出适用于气体泄漏红外检测的候选框以预置模型参数;优化定位损失函数以提高模型对泄漏区域的定位准确性;采用改进后的轻量化网络RepVGG模块重构特征提取网络增强模型的特征提取能力,以实现轻量化并提高检测精度。实验结果表明,GRNet模型对氨气泄漏的平均检测精度达到94.90%,单张图像平均检测时间达到3.40 ms。采用伪色彩映射实现泄漏浓度的视觉感知效果,采用PyQt5将GRNet模型进行封装实现气体泄漏红外检测系统界面的可视化并在Jetson Nano B01嵌入式实验平台部署该模型,验证了实际工程应用的可行性和有效性,为开发气体泄漏非接触探测装置以保障涉气企业的安全生产和稳定运行提供一种有效的检测算法。 展开更多
关键词 目标检测 气体泄漏检测 定位损失函数 图像预处理 聚类分析 结构重参数化
在线阅读 下载PDF
基于结构重参数化的遥感影像超分轻量化重建方法
3
作者 边佳明 刘烨 陈军 《遥感信息》 CSCD 北大核心 2024年第4期144-152,共9页
遥感影像成像过程中各种因素导致获取的影像分辨率较低进而难以达到预期观测效果,需要借助超分辨率重建技术实现质量增强。然而,大多数遥感影像超分辨率重建算法集中于提升超分网络模型的性能,忽略推理速度对超分辨率重建算法同样重要... 遥感影像成像过程中各种因素导致获取的影像分辨率较低进而难以达到预期观测效果,需要借助超分辨率重建技术实现质量增强。然而,大多数遥感影像超分辨率重建算法集中于提升超分网络模型的性能,忽略推理速度对超分辨率重建算法同样重要。文章设计了一种基于结构重参数化的遥感影像超分轻量化重建方法,在推理时通过参数等价转换减少模型参数和浮点运算数,从而实现更快的推理速度。采用AID与NWPU-RESISC45遥感数据集进行实验,根据典型评估指标峰值信噪比和结构相似性,将本文提出的ECBASR方法与经典的超分重建方法进行对比。实验结果表明,ECBASR取得了良好的重建性能,大幅减少了运行占用内存,加快了推理速度。 展开更多
关键词 遥感影像 超分辨率 卷积神经网络 轻量模型 结构重参数化
在线阅读 下载PDF
结合结构重参数化方法与空间注意力机制的图像融合模型 被引量:10
4
作者 俞利新 崔祺 +3 位作者 车军 许悦雷 张凡 李帆 《计算机应用研究》 CSCD 北大核心 2022年第5期1573-1578,1600,共7页
针对深度学习在红外与可见光图像融合时无法同时满足运算效率和融合效果的问题,提出了一种无监督端到端的红外与可见光图像融合模型。该模型的图像特征提取模块采用结构重参数化方法,有效提升了算法的运行效率;同时引入了注意力机制,减... 针对深度学习在红外与可见光图像融合时无法同时满足运算效率和融合效果的问题,提出了一种无监督端到端的红外与可见光图像融合模型。该模型的图像特征提取模块采用结构重参数化方法,有效提升了算法的运行效率;同时引入了注意力机制,减小了冗余信息对融合结果的干扰;损失函数基于结构相似度设计。对比实验结果表明,该模型保证了融合效果并提升了运行速度,相比于不使用结构重参数化的方法,运行速度提升了34%。 展开更多
关键词 结构重参数化 端到端 空间注意力机制 无监督学习 结构相似度
在线阅读 下载PDF
基于结构重参数化的复杂背景下天然草地植物图像轻量级分类识别方法 被引量:1
5
作者 王亚鹏 曹姗姗 +1 位作者 李全胜 孙伟 《西部林业科学》 CAS 北大核心 2023年第4期144-153,共10页
野外环境下天然草地植物种类的准确快速识别对草地资源调查、科学实验和教学科普等应用场景至关重要,目前多采用人工现场判别等方式,耗时耗力且受限于专家经验。以新疆干旱区天然草地植物为研究对象,构建自然复杂背景下的整株天然草地... 野外环境下天然草地植物种类的准确快速识别对草地资源调查、科学实验和教学科普等应用场景至关重要,目前多采用人工现场判别等方式,耗时耗力且受限于专家经验。以新疆干旱区天然草地植物为研究对象,构建自然复杂背景下的整株天然草地植物图像数据集。引入非对称卷积并结合结构重参数化方法优化RepVGG网络,提出并验证了一种兼顾识别精度、并行度和效率的自然复杂背景下天然草地植物图像轻量级分类识别模型(RepVGG_ACB),并与主流的经典网络模型(VGG系列和ResNet系列)以及轻量级模型(MobileNetV2和ShuffleNetV2)的识别效果进行对比分析。结果显示:(1)结构重参数化的RepVGG_ACB系列模型A0_ACB、A1_ACB和B0_ACB对天然草地植物的识别准确率为90.7%、92.4%和95.6%,模型有效且识别效果显著。(2)优化后的RepVGG_ACB网络在训练阶段采用多分支结构,识别准确率提高了1.9%~4.2%,提高了网络的泛化能力;在推理阶段采用并行度更高的单路结构,减少了FLOPs和参数量,降低了模型复杂度。(3)与经典网络模型相比,在准确率相当的情况下推理速度提升了1.3~3倍;与轻量级模型相比,推理速度虽略不及但准确率提高了2.1%~3.2%。结果表明:RepVGG_ACB系列网络在识别精度、并行度和效率方面取得均衡,具有其他网络所不具备的优势,可应用于无人机机载传感器网络或智能手持终端等边缘计算环境,为野外植物自动化高精度智能分类识别提供新方法。 展开更多
关键词 草地植物分类 自然复杂背景 植物图像识别 结构重参数化 轻量级网络模型
在线阅读 下载PDF
基于结构重参数化与多尺度深度监督的COVID-19胸部CT图像自动分割 被引量:6
6
作者 刘金平 吴娟娟 +1 位作者 张荣 徐鹏飞 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1163-1171,共9页
基于深度学习模型的胸部CT(Computed Tomography)图像自动分割有助于辅助医生诊疗.但随着网络宽度与深度的加深,网络训练困难且推理减慢.为提高隐藏层的学习能力,深度监督机制被用于网络训练.但以往的深度监督方法没有考虑模型中多尺度... 基于深度学习模型的胸部CT(Computed Tomography)图像自动分割有助于辅助医生诊疗.但随着网络宽度与深度的加深,网络训练困难且推理减慢.为提高隐藏层的学习能力,深度监督机制被用于网络训练.但以往的深度监督方法没有考虑模型中多尺度特征图的分层表示以及上采样对参与损失计算的特征图质量的影响.为加强隐藏层学习过程的直接性同时加快网络推理,本文提出一种结构重参数化与多尺度深度监督分割网络(Structural Reparameterization and Multi-scale Deep Supervision Network,SR&MDS-Net),以实现COVID-19(COrona VIrus Disease 2019)胸部CT图像的高效准确分割.首先构建一种结构重参数化特征变异(Structure Reparameterized Featurev ariation,SRFV)模块将网络的训练与推理进行解耦,在提高模型表达能力的同时加快推理速度;然后,提出一种新颖的多尺度深度监督机制,以加强网络监督效果,提高网络性能.在公开的COVID-19胸部CT图像数据集上进行实验,SR&MDSNet的灵敏度、特异性、准确率、Dice分别达到了91.5%、99.5%、72.8%、80.1%,与同类其他方法比较,具有更优的性能. 展开更多
关键词 COVID-19 医学图像分割 深度学习 U-Net 结构重参数化 深度监督学习
在线阅读 下载PDF
基于结构重参数化和注意力机制的复杂背景下手势识别 被引量:1
7
作者 杨黎霞 夏天 +2 位作者 陈仁祥 张晓 邱天然 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第12期201-209,共9页
针对复杂背景下手势图像受到干扰较多而导致的手势识别准确率低、识别速度慢问题,提出一种基于结构重参数化和注意力机制的复杂背景下手势识别算法RepSEHGR(re-parameter squeeze-expand hand gesture recognition)。通过使用结构重参... 针对复杂背景下手势图像受到干扰较多而导致的手势识别准确率低、识别速度慢问题,提出一种基于结构重参数化和注意力机制的复杂背景下手势识别算法RepSEHGR(re-parameter squeeze-expand hand gesture recognition)。通过使用结构重参数化方法,将其应用到残差结构中,在部署阶段去除多余分支结构,提升算法识别速度;同时嵌入通道注意力机制模块,利用其为不同通道特征加权的特点使算法关注手势特征,减少复杂背景干扰;使用cutout与仿射变换2种数据增强方法训练算法,抑制复杂背景噪声输入并增强数据,减少过拟合的同时提升算法健壮性。在一个复杂背景手势数据集上进行对比实验,结果显示:识别精度达到99.9%,识别速度达到200 fps,证明了所提算法的有效性。 展开更多
关键词 手势识别 注意力机制 复杂背景 结构重参数化 数据增强
在线阅读 下载PDF
基于结构重参数化的目标检测模型 被引量:1
8
作者 吕昌 尹和 邵叶秦 《电子测量技术》 北大核心 2023年第18期114-121,共8页
虽然多尺度感受野特征融合能显著提升目标检测模型的精度,但同时也大大增加了模型的运算成本。针对这一问题,本文提出了基于结构重参数化的目标检测模型。首先,使用深度卷积代替SPP中的最大池化,并利用结构重参数化降低模块运算量,提出... 虽然多尺度感受野特征融合能显著提升目标检测模型的精度,但同时也大大增加了模型的运算成本。针对这一问题,本文提出了基于结构重参数化的目标检测模型。首先,使用深度卷积代替SPP中的最大池化,并利用结构重参数化降低模块运算量,提出了新的感受野特征融合模块CspRepSPP。接着,基于结构重参数化技术,提出了新的特征提取模块RepBottleNeck。实验结果表明,在VOC 2012数据集上,相比原模型YOLOv5s,本文模型在mAP0.5:0.95指标上提升了3.22%,单张图片的推理速度提升了0.5 ms,GFLOPs降低了1.0。与其他YOLOv5s改进算法相比,本文算法检测精度更高,推理速度更快,参数量更低。 展开更多
关键词 结构重参数化 多尺度感受野 目标检测 卷积神经网络
在线阅读 下载PDF
联合结构重参数和YOLOv5的航拍红外目标检测 被引量:1
9
作者 邵延华 张兴平 +2 位作者 张晓强 楚红雨 吴亚东 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期382-389,共8页
无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍... 无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍场景的目标检测模型Rep-YOLO。首先,在主干网络中引入RepVGG模块,提升模型特征提取能力;在模型推理时对RepVGG模块的多分支进行结构重参数化,减少网络分支和结构复杂度。其次,结合数据特征,改进检测网络颈部的路径聚合网络,提升检测算法在机载平台的精度-速度均衡能力。最后,在两个公开红外数据集进行对比实验,表明该算法的有效性。以南航ComNet航拍数据集为例,统计结果显示主要检测指标各类平均精度(mean Average Precision,mAP)提升5.9%,同时参数量和模型大小分别减少约29.7%和23.2%。另外,对Rep-YOLO在典型机载平台Jetson Nano上进行了模型部署验证,为航拍场景的检测算法改进和实际应用提供了可靠的技术支撑。 展开更多
关键词 深度学习 红外图像 航拍目标检测 YOLOv5 结构重参数化
在线阅读 下载PDF
基于多分支结构的手写字图像特征提取自适应算法
10
作者 郭晓静 赵小源 邹松林 《工程科学与技术》 北大核心 2025年第3期247-255,共9页
飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用... 飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用情形,导致字符特征提取困难且识别精度不高。为了针对性地提升平均识别准确率和速度,减少结构相似字、结构复杂字等的错误识别,本文提出一种多分支卷积与特征融合提取结构。利用深层卷积的多尺度特征提取优势,引入改进的重参数化多分支结构来改善图像全局、局部特征提取效果;采用全卷积实现区域空间特征与图像深层特征融合,在分类过程中,提出融合全卷积分类器结构,依据字符特征复杂程度不同自适应分类,改善相似字与复杂字类间、类内的分类识别效果。与主流的手写字识别方法相比,改进后网络结构的存储大小为69.1 MB;在汉字数据集上的实验表明,识别精度与速度均大幅提升,模型首次预测准确率和前5次预测准确率分别达到97.50%和99.79%。模型对相似字符、中英文字符的识别模型优势明显,在包含了中英文和数字的数据集上,改进后结构存储大小为69.2 MB,实验结果中首次预测准确率达到97.23%,推理速度达到1 400张/s,对飞机地面维护工卡识别等特定领域有一定价值。 展开更多
关键词 脱机手写汉字识别 全卷积 参数结构 空间特征融合 参数多分支卷积算法
在线阅读 下载PDF
基于改进RT-DETR的井下输送带跑偏故障检测算法 被引量:1
11
作者 安龙辉 王满利 张长森 《工矿自动化》 北大核心 2025年第3期54-62,共9页
目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT-DETR的井下输送带跑偏故障检测算法,使用改进RT-DETR直接对一组托... 目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT-DETR的井下输送带跑偏故障检测算法,使用改进RT-DETR直接对一组托辊检测,根据左右托辊的暴露程度识别是否跑偏。针对实时检测转换器(RT-DETR)主干网络进行3个方面的改进:①为了减少主干网络的参数量和浮点运算数量(FLOPs),使用FasterNet Block替换ResNet34中的BasicBlock;②为了提升模型的精度和效率,在FasterNet Block结构中,引入结构重参数化的思想;③为了提升FasterNet Block在特征提取方面的性能,引入了高效多尺度注意力机制(EMA),更加有效地捕捉全局和局部特征图。为了拓展感受野并捕获更有效、更广泛的上下文信息,以获得更为丰富的特征表达,采用改进高级筛选特征融合金字塔网络(HS-FPN)来优化多尺度特征融合。实验结果表明,与基准模型相比较,改进RT-DETR模型的参数量和FLOPs分别减少了8.4×10^(6)个和17.8 G,mAP@0.5达94.5%,严重跑偏检测精度达99.2%,检测速度达41.0帧/s,优于TOOD,ATSS等目标检测模型,满足煤矿生产对目标检测实时性和准确性的需求。 展开更多
关键词 输送带跑偏 目标检测 实时检测转换器 结构重参数化 高效多尺度注意力机制 多尺度特征融合
在线阅读 下载PDF
基于场景自适应知识蒸馏的红外与可见光图像融合
12
作者 蔡烁 姚玄石 +1 位作者 唐远志 邓泽阳 《电子与信息学报》 北大核心 2025年第4期1150-1160,共11页
红外与可见光图像融合的目的是将这两种异模态图像信息整合成场景细节信息更全面的融合图像。现有的一些融合算法仅关注评价指标的提升,而忽略了其在现实应用中的模型轻量性和场景泛化性的需求。为了解决该问题,该文提出一种基于场景自... 红外与可见光图像融合的目的是将这两种异模态图像信息整合成场景细节信息更全面的融合图像。现有的一些融合算法仅关注评价指标的提升,而忽略了其在现实应用中的模型轻量性和场景泛化性的需求。为了解决该问题,该文提出一种基于场景自适应知识蒸馏的红外与可见光图像融合方法。首先,将领先的融合算法作为教师网络得到白天场景的学习样本,用低光增强算法继续处理得到黑夜场景的学习样本;然后,通过光照感知网络预测可见光图像的白天黑夜场景概率,从而指导学生网络实现对教师网络的场景自适应知识蒸馏;最后,引入基于结构重参数化的视觉变换器(RepViT)进一步降低模型的计算资源消耗。在MSRS和LLVIP数据集上与7种主流的深度学习融合算法进行了定性与定量的实验对比,所提融合方法能够在更低的计算资源消耗下,实现多个评价指标的提升,并在白天黑夜场景均能实现较好的融合视觉效果。 展开更多
关键词 红外与可见光图像融合 场景自适应 知识蒸馏 结构重参数化 深度学习
在线阅读 下载PDF
基于改进RT-DETR的路面坑槽检测模型 被引量:3
13
作者 许小伟 陈燕玲 +2 位作者 占柳 漆庆华 邓明星 《武汉科技大学学报》 CAS 北大核心 2024年第6期457-467,共11页
路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更... 路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更多特征信息,提高小目标检测精度;引入渐进特征金字塔网络实现特征融合,避免多级传输造成的信息丢失,以解决坑槽特征信息主要集中在中、底特征层的问题;使用结构重参数化模块Conv3XCC3进行特征再提取,在提高网络表达能力的同时又不增加计算量。实验结果显示,相比原RT-DETR模型,PP-DETR的精确率与召回率分别提升了2.9和5.4个百分点,mAP达到76.9%。本文提出的改进方法有效提升了网络的特征提取和特征融合能力,在路面坑槽检测任务上的表现明显优于YOLO系列模型。 展开更多
关键词 目标检测 路面坑槽 改进RT-DETR 渐进特征金字塔网络 结构重参数化
在线阅读 下载PDF
RepViTS-YOLOX:水下模糊及遮挡目标检测方法 被引量:9
14
作者 陶洋 朱腾 +2 位作者 钟邦乾 周昆 周立群 《计算机工程与应用》 CSCD 北大核心 2024年第13期200-208,共9页
针对水下目标检测中的目标模糊和遮挡问题,提出基于YOLOX改进的RepViTS-YOLOX水下目标检测方法。该方法采用RepViTS作为特征提取网络并通过结构重参数化,有效提升了对水下目标的特征提取能力和模型推理速度。引入空间和通道重构(spatial... 针对水下目标检测中的目标模糊和遮挡问题,提出基于YOLOX改进的RepViTS-YOLOX水下目标检测方法。该方法采用RepViTS作为特征提取网络并通过结构重参数化,有效提升了对水下目标的特征提取能力和模型推理速度。引入空间和通道重构(spatial and channel reconstruction convolution,SCConv)模块,增强网络对模糊目标的关注。改进特征融合网络,通过跨尺度连接和多尺度融合,加强不同层次特征间的信息交流,使模型更好理解遮挡目标特征。针对定位和分类任务对特征的不同需求,引入上下文解耦头(task-specific context decoupling head,TSCODE),对遮挡目标更精准地定位和分类。实验结果证明,RepViTS-YOLOX方法在RUOD数据集上取得了85.7%的检测效果,较YOLOX提高了3.8个百分点。检测结果显示,该方法可以有效改善水下模糊和遮挡目标的检测情况,提高水下目标检测精度。 展开更多
关键词 YOLOX 目标检测 结构重参数化 解耦检测头 注意力机制
在线阅读 下载PDF
基于双线性RepVGG注意力网络的花卉分类 被引量:1
15
作者 侯向宁 赵金伟 +1 位作者 黄孝斌 蒋维成 《激光杂志》 CAS 北大核心 2024年第4期165-171,共7页
为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两... 为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两个RepVGG网络中分别引入通道注意力及空间注意力机制,并利用两个RepVGG网络外积后生成的高维双线性特征,来提取花卉的细粒度特征;最后通过结构重参数化,将RepVGG的各层转换为单路结构,以提高模型推理的速度。实验结果表明,在增强的Oxford-102数据集上,新模型与原始模型及常见模型相比,其推理速度及分类准确率均有较大的提升,与未引入注意力前相比,分类准确率也有一定的提升。 展开更多
关键词 双线性卷积神经网络 RepVGG 注意力机制 细粒度 结构重参数化
在线阅读 下载PDF
融合大卷积核注意力机制的水下目标检测算法 被引量:1
16
作者 陶洋 赵文博 +2 位作者 钟邦乾 周昆 周立群 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2688-2694,共7页
水下目标检测广泛应用于水下勘探、水下生物监测等领域.水下生物的自身习性导致目标之间存在相互遮挡的问题,水体对光线的吸收与散射导致水下图像存在颜色偏移与模糊.针对上述问题,本文提出LKCA-YOLOv5水下目标检测算法.首先,设计空间融... 水下目标检测广泛应用于水下勘探、水下生物监测等领域.水下生物的自身习性导致目标之间存在相互遮挡的问题,水体对光线的吸收与散射导致水下图像存在颜色偏移与模糊.针对上述问题,本文提出LKCA-YOLOv5水下目标检测算法.首先,设计空间融合(S2F)模块,增强对空间维度信息的关注,提高对遮挡目标的检测能力.其次,设计大核卷积注意力特征提取模块,增强对模糊及颜色偏移水下图像的特征提取能力.最后,重参数化LKCA-YOLOv5的跨尺度特征融合单元(CFFU),优化模型检测速度.实验结果表明,LKCA-YOLOv5算法在RUOD数据集和URPC数据集上的检测精度分别达到72.1%和87.3%,检测速度分别达到48FPS和33FPS,相比前沿水下目标检测算法,LKCA-YOLOv5在具有较高检测精度的同时具有更快的检测速度,更加适用于水下目标检测任务. 展开更多
关键词 深度学习 目标检测 YOLO 注意力机制 结构重参数化
在线阅读 下载PDF
基于弱光环境的车辆识别研究 被引量:3
17
作者 张峻祎 丁冰 丁洁 《现代电子技术》 北大核心 2024年第7期17-24,共8页
由于图像在弱光环境下具有低曝光、前景背景融合、对比度低等问题,因此难以在弱光环境下有效、实时检测图像中的目标车辆。目前为了提高检测效果,通常需要设计较为复杂的神经网络结构或建立额外的对比数据集,但这不仅降低了网络速度,也... 由于图像在弱光环境下具有低曝光、前景背景融合、对比度低等问题,因此难以在弱光环境下有效、实时检测图像中的目标车辆。目前为了提高检测效果,通常需要设计较为复杂的神经网络结构或建立额外的对比数据集,但这不仅降低了网络速度,也会提升网络训练成本。为了解决这一问题,提出一种弱光环境下的车辆识别网络,在该网络中一方面设计了特征提取模块与特征融合模块以提高网络在弱光环境下的检测能力,另一方面使用模块结构重参数化的方法以提高网络的检测速度。实验表明,该网络可在保证检测速度的同时有效地识别弱光环境下的车辆。 展开更多
关键词 弱光环境 车辆检测 神经网络 特征提取 特征融合 模块结构重参数化
在线阅读 下载PDF
RCSA-YOLO:改进YOLOv8的SAR舰船实例分割 被引量:2
18
作者 王磊 张斌 吴奇鸿 《计算机工程与应用》 CSCD 北大核心 2024年第18期103-113,共11页
针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原... 针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原网络中的C2f模块,增强网络的特征提取和特征表达能力,有效过滤了复杂背景噪声的干扰。使用基于内容感知的特征重组模块(content-aware reassembly of features,CARAFE)替换最近邻上采样方法,有效缓解了小目标信息丢失现象,提升了分割精细化程度。使用可切换空洞卷积(switchable atrous convolution,SAC)进行下采样操作,动态调整感受野大小,使模型具备更强的多尺度适应能力,确保了在不同尺寸舰船目标上的分割精度。在HRSID数据集上的实验结果表明,提出的算法可以将YOLOv8模型的AP_(50)值从87.7%提高到90.7%,较原算法提高了3个百分点。与主流的实例分割算法对比,SAR舰船实例分割精度也明显提升,证明了RCSA-YOLO的有效性。 展开更多
关键词 合成孔径雷达 结构重参数化 上采样 可切换空洞卷积
在线阅读 下载PDF
基于RepVGG-A0改进的公路车型识别网络 被引量:1
19
作者 任成汉 黄俊 《激光杂志》 CAS 北大核心 2024年第1期166-171,共6页
针对当前车型识别过程中检测精度与实时性难以平衡的问题,提出了一种基于RepVGG-A0改进的公路车型识别网络,利用结构重参数化思想融合多分枝网络以提升网络推理速度。使用混合空洞卷积替换传统卷积,强化了模型对大目标的识别能力。在网... 针对当前车型识别过程中检测精度与实时性难以平衡的问题,提出了一种基于RepVGG-A0改进的公路车型识别网络,利用结构重参数化思想融合多分枝网络以提升网络推理速度。使用混合空洞卷积替换传统卷积,强化了模型对大目标的识别能力。在网络主干中插入融合残差结构的坐标注意力(RES-CA)模块,提升了网络对有效特征信息的提取能力,同时避免了梯度消失与梯度退化造成的影响。此外采用了标签平滑正则化方法对损失函数进行改进,降低了模型过拟合对检测结果的影响,提升了模型的泛化性。经验证,本方法在公路车辆数据集BIT-Vehicle上的识别准确率达到了97.17%,较原模型提升了2.67%,优于现有的ResNet-18,VGG等网络模型,同时保证了模型的检测速度。 展开更多
关键词 车型识别 结构重参数化 残差结构 混合空洞卷积 标签平滑正则
在线阅读 下载PDF
改进YOLOv8n的道路目标检测算法 被引量:13
20
作者 高德勇 陈泰达 缪兰 《计算机工程与应用》 CSCD 北大核心 2024年第16期186-197,共12页
针对道路场景中目标尺度多变、复杂背景干扰导致检测精度低、漏检率高的问题,提出一种改进YOLOv8n的道路目标检测算法。引入多样化分支块(diverse branch block,DBB)构建C2fDBB模块,替代原算法中的C2f模块,增强网络多尺度特征提取能力... 针对道路场景中目标尺度多变、复杂背景干扰导致检测精度低、漏检率高的问题,提出一种改进YOLOv8n的道路目标检测算法。引入多样化分支块(diverse branch block,DBB)构建C2fDBB模块,替代原算法中的C2f模块,增强网络多尺度特征提取能力。在路径聚合网络(path aggregation network,PANet)的基础上结合渐进特征金字塔网络(asymptotic feature pyramid network,AFPN)思想,提出PA-AFPN(path aggregation progressive feature pyramid network)特征融合方式,提升网络对多尺度特征的融合能力。设计SPPF2_TA(SPPF with dual-branch structure incorporating triplet attention)模块,通过在SPPF(spatial pyramid pooling fast)中引入平均池化分支和三重注意力机制(triplet attention,TA),有效整合多尺度信息,降低背景干扰对检测的影响。采用MPDIoU作为新边界回归损失函数,替代原损失函数,加速算法收敛,提高目标定位精度。在公开道路目标数据集BDD100K和SODA10M上的实验结果显示,改进方法的mAP@0.5相较于基线算法分别提升了5.7个百分点和7.3个百分点,计算量降低了0.6 GFLOPs。与其他主流目标检测方法相比,改进方法在计算量、FPS和mAP@0.5等方面均展现出显著优势,更加契合道路场景下的目标检测任务需求。 展开更多
关键词 YOLOv8 结构重参数化 渐进特征金字塔网络(AFPN) 道路目标 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部