期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于多尺度结构自相似性的单幅图像超分辨率算法 被引量:45
1
作者 潘宗序 禹晶 +1 位作者 胡少兴 孙卫东 《自动化学报》 EI CSCD 北大核心 2014年第4期594-603,共10页
多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,SR)算法,该算法结合了压缩感知框... 多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率. 展开更多
关键词 超分辨率 结构自相似性 多尺度 压缩感知 非局部方法
在线阅读 下载PDF
基于压缩感知与结构自相似性的遥感图像超分辨率方法 被引量:7
2
作者 潘宗序 黄慧娟 +4 位作者 禹晶 胡少兴 张爱武 马洪兵 孙卫东 《信号处理》 CSCD 北大核心 2012年第6期859-872,共14页
本文提出了一种基于压缩感知、结构自相似性和字典学习的遥感图像超分辨率方法,其基本思路是建立能够稀疏表示原始高分辨率图像块的字典。实现超分辨率所必需的附加信息来源于遥感图像中广泛存在的自相似结构,该信息可在压缩感知框架下... 本文提出了一种基于压缩感知、结构自相似性和字典学习的遥感图像超分辨率方法,其基本思路是建立能够稀疏表示原始高分辨率图像块的字典。实现超分辨率所必需的附加信息来源于遥感图像中广泛存在的自相似结构,该信息可在压缩感知框架下通过字典学习而得到。这里,本文采用K-SVD方法构建字典、并采用OMP方法获取用于稀疏表达的相关系数。与现有基于样本的超分辨率方法的最大不同在于,本文方法仅使用了低分辨率图像及其插值图像,而不需要使用其他高分辨率图像。另外,为了评价方法的效果,本文还引入了一个衡量图像结构自相似性程度的新型指标SSSIM。对比实验结果表明,本文方法具有更好的超分辨率重构效果和运算效率,并且SSSIM指标与超分辨率重构效果具有较强的相关性。 展开更多
关键词 遥感图像超分辨率 结构自相似性 压缩感知 字典训练 图像质量评价
在线阅读 下载PDF
基于字典学习与结构自相似性的码本映射超分辨率算法 被引量:7
3
作者 潘宗序 禹晶 +1 位作者 肖创柏 孙卫东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第6期1032-1038,共7页
图像的空间分辨率受成像环境、硬件制造水平和成本等多方面因素的影响,存在一定的局限性.为了提高图像的空间分辨率,提出一种基于字典学习与结构自相似性的码本映射超分辨率算法.首先利用训练集构建与图像高低频分量对应的高低频码本,... 图像的空间分辨率受成像环境、硬件制造水平和成本等多方面因素的影响,存在一定的局限性.为了提高图像的空间分辨率,提出一种基于字典学习与结构自相似性的码本映射超分辨率算法.首先利用训练集构建与图像高低频分量对应的高低频码本,将高低频码本作为训练样本获取高低频字典;然后在初始重建图像中搜索目标图像块的相似图像块,利用相似图像块构建非局部约束项;最后通过求解含有非局部约束项的l0范数最小化问题获取目标图像块的稀疏表示系数,并利用高低频字典重建高分辨率图像块.该算法利用高低频字典表示目标图像块,而不是直接采用高低频码本,提高了算法的运算效率;利用相似图像块构建正则化约束项,提高了重建图像的质量.实验结果表明,与LLE,Sc SR和NARM等算法相比,文中算法取得的超分辨率重建效果更好. 展开更多
关键词 超分辨率 码本映射 字典学习 结构自相似性
在线阅读 下载PDF
一种基于多尺度结构自相似性的图像超分辨率重建算法 被引量:5
4
作者 张子龙 李庆武 +1 位作者 何敏 武福生 《科学技术与工程》 北大核心 2016年第33期92-97,共6页
多尺度结构自相似性是指图像中存在大量相同尺度,以及不同尺度相似结构的性质。提出一种基于多尺度结构自相似性的超分辨率重建算法;该方法通过图像旋转和金字塔分解,将输入图像的先验信息附加到训练库中;并对样本图像块聚类,分别训练... 多尺度结构自相似性是指图像中存在大量相同尺度,以及不同尺度相似结构的性质。提出一种基于多尺度结构自相似性的超分辨率重建算法;该方法通过图像旋转和金字塔分解,将输入图像的先验信息附加到训练库中;并对样本图像块聚类,分别训练针对各类的多个字典。在图像重建阶段,自适应选择最优字典;并利用相似图像块间的关系建立非局部约束项重建图像。最后利用迭代反投影算法进行图像后处理,进一步提升图像的超分辨率重建效果。实验结果表明,与SCSR、SISR和ASDS算法相比,算法能够取得边缘更为清晰的超分辨率重建效果。 展开更多
关键词 超分辨率重建 多尺度 结构自相似性 稀疏表示
在线阅读 下载PDF
基于多尺度结构自相似性的超分辨率算法 被引量:1
5
作者 卢紫微 吴成东 +1 位作者 陈东岳 于晓升 《控制工程》 CSCD 北大核心 2020年第5期776-780,共5页
多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种图像结构自相似性广泛存在于自然图像中。提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super Resolution,SR)算法,该算法不依赖于外界图像,仅在原始... 多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种图像结构自相似性广泛存在于自然图像中。提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super Resolution,SR)算法,该算法不依赖于外界图像,仅在原始图像的多尺度图像中搜索低分辨率(Low Resolution,LR)图像块的最相似子块,并结合脊回归算法获得低分辨率图像块和相应高分辨率(High Resolution,HR)图像块的映射关系。此外,将原始图像进行旋转、翻转等操作,扩大内部图像块的样本空间。大量的对比实验表明,本文所提算法有效地提高了峰值信噪比(Peak Signal to Noise Ratio,PSNR)和图像可视效果。 展开更多
关键词 超分辨率 结构自相似性 多尺度 脊回归
在线阅读 下载PDF
结合结构自相似性和卷积网络的单幅图像超分辨率 被引量:10
6
作者 向文 张灵 +1 位作者 陈云华 姬秋敏 《计算机应用》 CSCD 北大核心 2018年第3期854-858,共5页
针对单幅图像超分辨率(SR)复原病态逆问题,在重建过程边缘细节丢失导致的模糊,提出一种结合结构自相似和卷积网络的单幅图像超分辨率算法。首先,通过将尺度分解获得待重构图片样本的自身结构相似性,结合外部数据库样本结合作为训练样本... 针对单幅图像超分辨率(SR)复原病态逆问题,在重建过程边缘细节丢失导致的模糊,提出一种结合结构自相似和卷积网络的单幅图像超分辨率算法。首先,通过将尺度分解获得待重构图片样本的自身结构相似性,结合外部数据库样本结合作为训练样本,可以解决样本过于分散的问题;其次,将样本输入卷积神经网络(CNN)进行训练学习,得到单幅图像超分辨率的先验知识;然后,利用非局部约束项自适应选择最优字典重建图像;最后,利用迭代反投影算法对图像超分辨率效果进一步提升。实验结果表明,与双三次插值(Bicubic)方法、K-SVD算法和基于卷积神经网络的图像超分辨率(SRCNN)方法等优秀算法相比,所提算法可以得到边缘更为清晰的超分辨率重建效果。 展开更多
关键词 超分辨率 结构自相似性 深度卷积网络 正则化 块匹配
在线阅读 下载PDF
基于光谱相似性的高光谱图像超分辨率算法 被引量:13
7
作者 潘宗序 禹晶 +1 位作者 肖创柏 孙卫东 《自动化学报》 EI CSCD 北大核心 2014年第12期2797-2807,共11页
光谱相似性是指高光谱图像中的大量像元具有相似光谱的性质.提出了一种基于光谱相似性的高光谱遥感图像超分辨率算法,利用遥感图像中广泛存在的结构自相似性提升图像的空间分辨率,利用高光谱图像的低维子空间性通过主成分分析降低光谱... 光谱相似性是指高光谱图像中的大量像元具有相似光谱的性质.提出了一种基于光谱相似性的高光谱遥感图像超分辨率算法,利用遥感图像中广泛存在的结构自相似性提升图像的空间分辨率,利用高光谱图像的低维子空间性通过主成分分析降低光谱维数提高运算效率,利用具有相似光谱的像元构建光谱约束项保证重建图像光谱的准确性.该算法在将单波段图像超分辨率方法推广到处理具有数百、乃至上千波段的高光谱图像过程中,既保证了重建图像光谱的准确性,又具有较高的运算效率.实验表明,与双三次插值和基于稀疏表示与光谱正则化约束的高光谱图像超分辨率算法相比,该算法具有更高的空间分辨率提升能力和更好的光谱保真能力. 展开更多
关键词 超分辨率 高光谱图像 光谱相似性 结构自相似性
在线阅读 下载PDF
基于多尺度非局部约束的单幅图像超分辨率算法 被引量:7
8
作者 潘宗序 禹晶 +1 位作者 肖创柏 孙卫东 《自动化学报》 EI CSCD 北大核心 2014年第10期2233-2244,共12页
多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加... 多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加入到重建图像中.多尺度非局部方法在图像金字塔的不同层中搜索相似图像块,并利用多尺度相似图像块间的关系建立非局部约束项,通过正则化约束获取多尺度自相似结构中的附加信息;多尺度字典学习方法将图像金字塔作为字典学习的样本,通过字典学习使样本中的多尺度相似图像块在字典下具有稀疏表示形式,从而获取多尺度自相似结构中的附加信息.实验表明,与ScSR、SISR、NLIBP、CSSS、ASDSAR和mSSIM等算法相比,本文的算法取得了更好的超分辨率重建效果. 展开更多
关键词 超分辨率 多尺度结构自相似性 稀疏表示 非局部方法
在线阅读 下载PDF
Dual optimization image repair algorithm based on linear structure and optimal texture 被引量:1
9
作者 陈炳权 刘宏立 《Journal of Central South University》 SCIE EI CAS 2014年第6期2315-2323,共9页
The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information perform... The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms. 展开更多
关键词 image restoration linear structure texture information ITERATION sparse representation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部