对复合材料吸能结构盒段进行了耐撞性(crashworthiness)试验研究,得到吸能所关心的载荷-位移曲线,并获得相应的平均载荷、峰值载荷以及吸收总能量相关吸能参数.考虑复合材料的各向异性本构关系,对有限元软件进行了二次开发.考虑含刚度...对复合材料吸能结构盒段进行了耐撞性(crashworthiness)试验研究,得到吸能所关心的载荷-位移曲线,并获得相应的平均载荷、峰值载荷以及吸收总能量相关吸能参数.考虑复合材料的各向异性本构关系,对有限元软件进行了二次开发.考虑含刚度退化的Hashin失效准则对结构组件进行渐进失效数值分析讨论.基于扩展的失效准则,设置相应的渐进削弱式的薄弱环节,模拟得到了吸能评价参数平均载荷值,数值计算得到的平均载荷值为361.10 k N.并与试验结果进行了比较,其相对误差不超过7%,计算结果与试验结果取得较好一致性,表明这种方法模拟分析结构组件抗坠毁是有效可行的.展开更多
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa...Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.展开更多
文摘对复合材料吸能结构盒段进行了耐撞性(crashworthiness)试验研究,得到吸能所关心的载荷-位移曲线,并获得相应的平均载荷、峰值载荷以及吸收总能量相关吸能参数.考虑复合材料的各向异性本构关系,对有限元软件进行了二次开发.考虑含刚度退化的Hashin失效准则对结构组件进行渐进失效数值分析讨论.基于扩展的失效准则,设置相应的渐进削弱式的薄弱环节,模拟得到了吸能评价参数平均载荷值,数值计算得到的平均载荷值为361.10 k N.并与试验结果进行了比较,其相对误差不超过7%,计算结果与试验结果取得较好一致性,表明这种方法模拟分析结构组件抗坠毁是有效可行的.
基金Project(2009AA05Z215) supported by the National High Technology Research and Development Program of China
文摘Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.