期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AI时代中的电子显微学研究:严峻挑战、无穷机遇与壮阔前景
1
作者 刘铮 沈庆涛 隋森芳 《电子显微学报》 北大核心 2025年第1期124-135,共12页
近十年来结构生物学的发展突飞猛进,取得的标志性突破有两个,一是以冷冻电镜为代表的结构解析技术方向上的突破,二是以AlphaFold算法为代表的结构预测模型上的突破。2024年5月Google DeepMind更新了其生物结构预测工具,最新版本的AlphaF... 近十年来结构生物学的发展突飞猛进,取得的标志性突破有两个,一是以冷冻电镜为代表的结构解析技术方向上的突破,二是以AlphaFold算法为代表的结构预测模型上的突破。2024年5月Google DeepMind更新了其生物结构预测工具,最新版本的AlphaFold 3拥有可以预测几乎所有分子类型的蛋白质复合体结构的能力,在药物互作预测方面也实现了很高的准确性。AlphaFold 3的发布为结构生物学研究带来巨大的变革,展现了AI技术的巨大潜力,也点燃了大众对生命科学和医学研究的热情与想象。与此同时,电子显微学的研究并未停下脚步,新技术、新方法层出不穷,在解析全新蛋白结构、超大超复杂复合体结构、动态结构、原位结构,以及更大尺度的细胞、组织、器官样品的研究中,电子显微学依旧有着不可替代的优势。当前有观点认为结构预测模型甚至可以替代以X射线晶体学和电子显微学为代表的传统实验科学,通过计算便能完成生物结构解析,但是这种观点是片面的。事实上,未来的结构生物学研究,必将是一个整合实验科学与AI技术,从单个蛋白或复合体的结构全面拓展到多蛋白复杂体系、细胞内原位、以及超越微观尺度进入到介观和宏观尺度等方面的研究。 展开更多
关键词 电子显微学 高分辨结构 AlphaFold 结构模型预测
在线阅读 下载PDF
Investigation of effective dimensionless numbers on initiation of instability in combustion of moisty organic dust 被引量:4
2
作者 Mehdi Bidabadi Farzad Faraji Dizaji +1 位作者 Hossein Beidaghy Dizaji Moslem Safari Ghahsareh 《Journal of Central South University》 SCIE EI CAS 2014年第1期326-337,共12页
In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radi... In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radiation is taken into account. One- dimensional flame structure is divided into three zones: preheat zone, reaction zone and post-flame zone. To investigate pulsating characteristics of flame, governing equations are rewritten in dimensionless space-time ((, r/, ~) coordinates. By solving these newly achieved governing equations and combining them, which is completely discussed in body of article, a new expression is obtained. By solving this equation, it is possible to predict initiation of instability in organic dust flame. According to the obtained results by increasing Lewis number, threshold of instability happens sooner. On the other hand, pulsating is postponed by increasing Damk6hler number, pyrolysis temperature or moisture content. Also, by considering thermal radiation effect, burning velocity predicted by our model is closer to experimental results. 展开更多
关键词 INSTABILITY Lewis number Damk6hler number pyrolysis temperature moisture content organic dust
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
3
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部