VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a se...VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.展开更多
In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to ...In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.展开更多
Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of mul...Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.展开更多
基金Project(51201187)supported by the National Natural Science Foundation of China。
文摘VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.
基金Project(51021004) supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(40776055) supported by the National Natural Science Foundation of china+1 种基金Project(1002) supported by State Key Laboratory of Ocean Engineering Foundation, ChinaProject(NCET 11 0370) supported by the Program for New Century Excellent Talents in Universities of China
文摘In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.
文摘Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.