The effects of heat treatment and strontium(Sr) addition on the microstructure and mechanical properties of ADC1_(2) alloys were investigated,and two-stage solution treatment was introduced.The results indicated that ...The effects of heat treatment and strontium(Sr) addition on the microstructure and mechanical properties of ADC1_(2) alloys were investigated,and two-stage solution treatment was introduced.The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys.When 0.05 wt%Sr was added into the alloy,the eutectic Si phase was fully modified into fine fibrous structure;a-A1 andβ-A1_(5)FeSi phases were best refined;and the eutectic AlzCu phase was modified into block-like AlzCu phase that continuously distributed at the grain boundary.The ultimate tensile strength(UTS)(270.63 MPa)and elongation(3.19%)were increased by 51.2%and 73.4%respectively compared with unmodified alloys.After the two-stage solution treatment(500℃,6 h+520℃,4 h),for 0.05 wt%Sr modified ADC12 alloys,the Si phases transformed into fine particle structure and Al_(2)Cu phases were fully dissolved.The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3%and 6.8%respectively compared to solution treatment at 500℃and 520℃.After the aging treatment(175℃,7 h),the hardness and UTS were increased by 38.73%and 13.96%respectively when compared with the unmodified alloy.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
This study involves A356 alloy molded through ultrasonically vibrated cooling slope.The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated bi...This study involves A356 alloy molded through ultrasonically vibrated cooling slope.The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated billets got produced.An examination demonstrates ultrasonically vibrated cooling slope influencing the liquid fraction/microstructure/physical characteristics of stated billets.The investigation encompasses five diverse ultrasonic powers(0,75,150,200,250 W).The ultrasonic power of 150 W delivers finest/rounded microstructure with enhanced physical characteristics.Microstructural modifications reason physical transformations because of grain refinement and grain boundary/Hall-Petch strengthening.A smaller grain size reasons a higher strength/shape factor and an increased homogeneity reasons a higher ductility.Microstructural characteristics get improved by reheating.It is owing to coalescence throughout temperature homogenization.The physical characteristics is improved by reheating because of a reduced porosity and enhanced dissolution besides augmented homogeneity.A direct comparison remains impossible owing to unavailability of researches on ultrasonically vibrated cooling slope.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
基金Project(51364035)supported by the National Natural Science Foundation of ChinaProject(20133601110001)supported by the Ministry of Education Tied up with the Special Research Fund for the Doctoral Program for Higher School,China+1 种基金Project(KJLD14003)supported by the Loading Program of Science and Technology of College of Jiangxi Province,ChinaProject(2012-CYH-DW-XCL-002)supported by the Production and Teaching and Research Cooperation Plan of Naaachaaag Non-party Experts and Doctor,China
文摘The effects of heat treatment and strontium(Sr) addition on the microstructure and mechanical properties of ADC1_(2) alloys were investigated,and two-stage solution treatment was introduced.The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys.When 0.05 wt%Sr was added into the alloy,the eutectic Si phase was fully modified into fine fibrous structure;a-A1 andβ-A1_(5)FeSi phases were best refined;and the eutectic AlzCu phase was modified into block-like AlzCu phase that continuously distributed at the grain boundary.The ultimate tensile strength(UTS)(270.63 MPa)and elongation(3.19%)were increased by 51.2%and 73.4%respectively compared with unmodified alloys.After the two-stage solution treatment(500℃,6 h+520℃,4 h),for 0.05 wt%Sr modified ADC12 alloys,the Si phases transformed into fine particle structure and Al_(2)Cu phases were fully dissolved.The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3%and 6.8%respectively compared to solution treatment at 500℃and 520℃.After the aging treatment(175℃,7 h),the hardness and UTS were increased by 38.73%and 13.96%respectively when compared with the unmodified alloy.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Project(SAP-9162)supported by the Ministry of Mines,Technology Information,Forecasting and Assessment Council(TIFAC),Department of Science and Technology(DST),India。
文摘This study involves A356 alloy molded through ultrasonically vibrated cooling slope.The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated billets got produced.An examination demonstrates ultrasonically vibrated cooling slope influencing the liquid fraction/microstructure/physical characteristics of stated billets.The investigation encompasses five diverse ultrasonic powers(0,75,150,200,250 W).The ultrasonic power of 150 W delivers finest/rounded microstructure with enhanced physical characteristics.Microstructural modifications reason physical transformations because of grain refinement and grain boundary/Hall-Petch strengthening.A smaller grain size reasons a higher strength/shape factor and an increased homogeneity reasons a higher ductility.Microstructural characteristics get improved by reheating.It is owing to coalescence throughout temperature homogenization.The physical characteristics is improved by reheating because of a reduced porosity and enhanced dissolution besides augmented homogeneity.A direct comparison remains impossible owing to unavailability of researches on ultrasonically vibrated cooling slope.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.