传统的低秩恢复算法在识别有混合污染的人脸图像时,通常只对污染部分进行一种类型的约束,并不能很好地恢复出干净的样本。针对这种情况,提出了结构化鲁棒低秩恢复算法(structured and robust low-rank recovery for mixed contamination...传统的低秩恢复算法在识别有混合污染的人脸图像时,通常只对污染部分进行一种类型的约束,并不能很好地恢复出干净的样本。针对这种情况,提出了结构化鲁棒低秩恢复算法(structured and robust low-rank recovery for mixed contamination,SRLRR)。SRLRR算法利用对二维误差图像的低秩约束移除样本中的连续污染部分,同时利用稀疏约束分离样本中服从拉普拉斯分布的噪声。另外,为了学习到更具有鉴别性的低秩表示,该算法对表示系数进行了块对角结构化约束。在三个常用数据库上的实验证明了SRLRR算法的有效性和鲁棒性。展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
文摘传统的低秩恢复算法在识别有混合污染的人脸图像时,通常只对污染部分进行一种类型的约束,并不能很好地恢复出干净的样本。针对这种情况,提出了结构化鲁棒低秩恢复算法(structured and robust low-rank recovery for mixed contamination,SRLRR)。SRLRR算法利用对二维误差图像的低秩约束移除样本中的连续污染部分,同时利用稀疏约束分离样本中服从拉普拉斯分布的噪声。另外,为了学习到更具有鉴别性的低秩表示,该算法对表示系数进行了块对角结构化约束。在三个常用数据库上的实验证明了SRLRR算法的有效性和鲁棒性。
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.