期刊文献+
共找到433篇文章
< 1 2 22 >
每页显示 20 50 100
基于一维残差卷积神经网络的Pi2脉动识别模型
1
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于深度卷积神经网络的泌尿系结石成分输尿管镜图像诊断模型构建
2
作者 陈琼秋 孔祥辉 +4 位作者 陈合益 方崇国 陈武 陈大可 徐晓敏 《浙江临床医学》 2025年第2期243-246,共4页
目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%... 目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%)和测试集(30%)。采用在ImageNet数据集上预训练的Inception v3、ResNet50、AlexNet、VGG 19、DenseNet等网络架构,通过迁移学习技术构建了泌尿系结石成分分析模型。此外,还比较各模型的分类性能,并与泌尿外科医师在术中URS下的评估结果进行对比。结果在训练集和测试集上对构建的泌尿系结石成分URS图像诊断模型进行评估发现,Inception v3、ResNet50、AlexNet、VGG 19、DenseNet模型均具有较高的分类能力。其中Inception v3模型表现最佳,具有最高的准确度(训练集98.10%,测试集98.00%)、AUC值(训练集0.852,测试集0.834)、特异度(训练集82.42%,测试集81.37%)及敏感度(训练集88.36%,测试集86.43%)。一致性检验结果表明,各泌尿系结石成分URS图像诊断模型与医师经验诊断具有较好的一致性,并且Inception v3模型的分类一致性最佳(P<0.001)。结论深度学习技术在泌尿系结石成分诊断中显示出一定的应用潜力。基于CNN构建的泌尿系结石成分URS图像诊断模型具有较好的分类能力,可用于预测泌尿系结石成分。 展开更多
关键词 深度卷积神经网络 泌尿系结石 输尿管镜图像 诊断模型
在线阅读 下载PDF
基于卷积神经网络的内窥镜图像识别及FPGA实现
3
作者 刘生山 林金朝 +2 位作者 庞宇 王元发 周前能 《现代电子技术》 北大核心 2025年第11期156-162,共7页
为提高内窥镜病灶识别准确率和速度,减少检测仪器功耗,针对现有VGG16网络模型参数量大、FPGA加速困难等缺陷,文中提出一种改进VGG的图像识别电路系统,并将该系统首次应用于内窥镜图像病灶识别。首先,通过软件技术优化VGG算法卷积层和全... 为提高内窥镜病灶识别准确率和速度,减少检测仪器功耗,针对现有VGG16网络模型参数量大、FPGA加速困难等缺陷,文中提出一种改进VGG的图像识别电路系统,并将该系统首次应用于内窥镜图像病灶识别。首先,通过软件技术优化VGG算法卷积层和全连接层,增加自适应平均池化层;然后设计优化的卷积IP核,实现卷积和最大池化FPGA加速。为减少模型参数量,有效降低FPGA资源消耗,将改进网络层和批归一化层融合。实验结果表明,改进后的网络模型平均识别准确率为95.59%,模型大小为35.90 MB,相比原始网络准确率提升了3.24%,模型参数量减少92.99%。FPGA板级检测时间为0.55 s/张,相较ARM端和CPU端检测时间减少1509.06 s/张和0.14 s/张。通过优化和改进,提出的电路系统显著提升了内窥镜病灶识别的效率和准确率,有效降低了硬件资源消耗。 展开更多
关键词 卷积神经网络 VGG模型 FPGA 内窥镜图像识别 高层次综合工具 软硬协同
在线阅读 下载PDF
基于卷积神经网络的汽车灯座缺陷检测
4
作者 章宝明 王疆瑛 《内燃机与配件》 2025年第3期65-67,共3页
为了满足汽车车灯灯座毛刺、裂痕和注塑缺胶等缺陷问题的设计需求,通过对卷积神经网络的研究来实现对汽车车灯灯座进行缺陷检测,建立缺陷样品的标准数据集,采取Faster-RCNN、YOLOv3和YOLOv4算法对缺陷数据集进行训练,经过实验数据表明,F... 为了满足汽车车灯灯座毛刺、裂痕和注塑缺胶等缺陷问题的设计需求,通过对卷积神经网络的研究来实现对汽车车灯灯座进行缺陷检测,建立缺陷样品的标准数据集,采取Faster-RCNN、YOLOv3和YOLOv4算法对缺陷数据集进行训练,经过实验数据表明,Faster-RCNN和YOLOv3算法的准确率均能达到70%左右,而YOLOv4能达到75%左右,并进一步通过对YOLOv3模型中的CresX结构改进,将残差单元连接,让输入的特征分两部分进行卷积,提高特征的重用性,能够提升其准确率达到86.2%,结果分析表明基于本文模型的卷积神经网络在一定程度上能实现汽车车灯灯座的缺陷检测要求的有效性与准确性。 展开更多
关键词 缺陷检测 卷积神经网络 YOLOv3算法 改进YOLOv3模型
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型
5
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于卷积神经网络的轴向柱塞泵故障诊断研究
6
作者 汪亚南 《科技创新与应用》 2025年第16期80-83,共4页
基于卷积神经网络对轴向柱塞泵进行故障诊断,可以消除传统故障诊断人工设计并提取信号特征以及信号特征提取不完善的问题。在轴向柱塞泵正常状态、松靴、滑靴磨损、配流盘磨损和中心弹簧生效5种工作状态下采集振动信号,作为故障检测的... 基于卷积神经网络对轴向柱塞泵进行故障诊断,可以消除传统故障诊断人工设计并提取信号特征以及信号特征提取不完善的问题。在轴向柱塞泵正常状态、松靴、滑靴磨损、配流盘磨损和中心弹簧生效5种工作状态下采集振动信号,作为故障检测的数据样本,再输入到卷积神经网络模型中。运用D-1DCNN进行故障诊断可直接输入采集的原始信号,设置网络模型参数,对网络参数进行优化调整。经过实验发现,D-1DCNN在训练时间和准确率方面都具有较强的性能,故障诊断准确率可达到100%,训练时间为126 s。 展开更多
关键词 卷积神经网络 轴向柱塞泵 故障诊断 模型 信号采集
在线阅读 下载PDF
面向织物疵点检测神经网络模型的研究进展
7
作者 刁宇涵 祝双武 赵妍 《纺织科技进展》 2025年第3期21-29,共9页
疵点严重影响了织物外观质量,织物疵点自动检测技术对提高检测效率、降低人工成本、提高纺织企业生产智能化水平都具有重要的意义;因基于深度学习的神经网络具有强大的特征提取能力,近些年越来越多的研究人员将其用于织物疵点自动检测... 疵点严重影响了织物外观质量,织物疵点自动检测技术对提高检测效率、降低人工成本、提高纺织企业生产智能化水平都具有重要的意义;因基于深度学习的神经网络具有强大的特征提取能力,近些年越来越多的研究人员将其用于织物疵点自动检测过程中,提出了很多用于织物疵点检测的神经网络模型。为了提高织物疵点的检测性能和效率,对基于CNN(Convolutional Neural Networks)、生成模型和DETR(Detection Transformer)等当前主流网络模型的检测原理进行概述;分析以这几种网络为主干的多个神经网络模型,讨论其优缺点以及目前它们在织物疵点检测上的应用状况和面临的挑战;展望DETR相关算法的研究趋势。 展开更多
关键词 深度学习 织物疵点检测 卷积神经网络(CNN) 生成模型 DETR
在线阅读 下载PDF
基于双输入输出卷积神经网络代理模型的油藏自动历史拟合研究
8
作者 陈旭 张凯 +3 位作者 刘晨 张金鼎 张黎明 姚军 《油气地质与采收率》 CAS CSCD 北大核心 2024年第3期165-177,共13页
传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确... 传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确定性参数作为深度学习代理模型的输入参数。现有的深度学习代理模型常为单一输入输出的神经网络模型架构,并未考虑油藏自动历史拟合方法需要对多个油藏不确定性参数进行调整,且需要训练多个深度学习代理模型以实现对油藏含水饱和度场分布及压力场分布的预测。为此,提出了一种基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法,将油藏渗透率场分布及相对渗透率参数作为输入,使用双输入输出卷积神经网络同时对油藏含水饱和度场分布及压力场分布进行预测,利用Peaceman方程计算产量,并耦合到多重数据同化集合平滑器(ES-MDA)方法中,对油藏渗透率场分布及相对渗透率参数进行反演更新,实现较为高效的油藏自动历史拟合求解。研究结果表明:双输入输出卷积神经网络代理模型在指定时间步的油藏含水饱和度场分布、压力场分布的预测精度均为93%以上。相较于传统油藏自动历史拟合方法,基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法避免了多次调用油藏数值模拟器的计算耗时问题,提高了拟合效率。 展开更多
关键词 油藏自动历史拟合 油藏数值模拟 深度学习 代理模型 双输入输出卷积神经网络
在线阅读 下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
9
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
在线阅读 下载PDF
应用卷积神经网络模型的超声特征信号提取算法
10
作者 樊丹丹 孔明 +2 位作者 马馨玥 崔志文 徐佳奇 《中国测试》 CAS 北大核心 2024年第12期117-124,共8页
飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层... 飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层、五层池化层及RELU激活函数提取信号特征,输出层回归预测飞行时间差,提高对时间差估计的精度。仿真研究表明,模型预测的准确率高于99%,且有较好的泛化能力。搭建实验平台,进行实验研究,结果表明,卷积神经网络模型用于预测超声回波信号飞行时间差有着较高的测量准确性,其中测量误差优于±1%,重复性优于0.2%。 展开更多
关键词 超声波气体流量计 飞行时间差检测 卷积神经网络模型 回波信号处理
在线阅读 下载PDF
高效通道注意力结合卷积神经网络的近红外光谱分析模型研究
11
作者 王妞 宦克为 +2 位作者 傅钲淇 刘赋伟 王迪 《长春理工大学学报(自然科学版)》 2024年第1期16-22,共7页
近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光... 近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光谱分析模型(CNNECANet),该模型由8个一维卷积层、1个ECA模块、4个最大池化层、1个展平层、2个全连接层和1个参数优化器组成。ECA模块由1个全局平均池化、1个一维卷积层和1个Sigmoid激活函数组成。以啤酒、牛奶、柴油、谷物的近红外光谱公共数据为例,将CNNECANet与常用建模方法进行比较,CNNECANet比PLS的预测精度分别提高了30.3%、14.1%、29.5%、48.4%;CNNECANet比SVR的预测精度分别提高了33.5%、17.6%、39.0%、50.0%;CNNECANet比BP神经网络模型的预测精度分别提高了80.0%、29.0%、7.2%、42.7%。该模型具有更好的预测精度和鲁棒性,解决了传统近红外光谱建模算法容易出现过拟合、模型泛化性差等问题。 展开更多
关键词 近红外光谱 卷积神经网络 高效通道注意力 预测模型
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
12
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法 被引量:1
13
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于卷积神经网络的多偏移干涉相位滤波方法
14
作者 李涵 钟何平 +1 位作者 张鹏 唐劲松 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期2043-2050,共8页
为提升干涉信号处理中相位滤波的效果,提出了一种基于卷积神经网络的多偏移干涉相位滤波方法。利用干涉相位噪声模型解释了相位偏移原理,并根据相位偏移原理构建多个卷积神经网络去噪器,利用其分别对不同偏移的干涉相位进行滤波,生成多... 为提升干涉信号处理中相位滤波的效果,提出了一种基于卷积神经网络的多偏移干涉相位滤波方法。利用干涉相位噪声模型解释了相位偏移原理,并根据相位偏移原理构建多个卷积神经网络去噪器,利用其分别对不同偏移的干涉相位进行滤波,生成多个去噪相位。利用神经网络计算像素权值,对多个去噪结果进行融合,进而获得质量更好的相位滤波结果。仿真的数据和真实的数据试验表明,相较于传统方法,所提方法具有更好的细节保持能力,并且所得结果的均方根误差和留数点数量更低。 展开更多
关键词 干涉信号处理 相位滤波 卷积神经网络 噪声模型 干涉相位
在线阅读 下载PDF
基于深度卷积神经网络的汽车图像分类算法与加速研究 被引量:4
15
作者 黄佳美 张伟彬 熊官送 《现代电子技术》 北大核心 2024年第7期140-144,共5页
在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针... 在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针对上述问题,提出一种基于深度卷积神经网络的公交分类算法,该方法在现场可编程逻辑门阵列上实现了公交车图像分类算法的加速。通过基于迁移学习方法对ResNet50预训练模型进行微调,采用嵌入式端的推理加速实现对模型的推理,并对FPGA加速方案进行推理部署实现。结果表明,该算法具有硬件配置灵活、信息处理加速快的优点,这为实现神经网络在嵌入式平台的高效、高速应用提供了有效解决方案。 展开更多
关键词 图像分类 边缘计算 卷积神经网络 迁移学习 ResNet50模型 加速推理
在线阅读 下载PDF
基于卷积神经网络的白酒上甑探汽方法 被引量:2
16
作者 刘文斌 庹先国 +2 位作者 张贵宇 罗琪 彭英杰 《食品研究与开发》 CAS 2024年第5期139-144,共6页
针对白酒“探汽上甑”工艺在实现自动化过程中出现的探汽准确率低的问题,提出一种基于卷积神经网络的探汽方法。通过红外热成像仪采集甑锅内酒醅表面的红外图像并做预处理,再结合上甑工艺特点将图像分类,利用卷积神经网络训练得到探汽... 针对白酒“探汽上甑”工艺在实现自动化过程中出现的探汽准确率低的问题,提出一种基于卷积神经网络的探汽方法。通过红外热成像仪采集甑锅内酒醅表面的红外图像并做预处理,再结合上甑工艺特点将图像分类,利用卷积神经网络训练得到探汽模型。训练结果表明,AlexNet、VGGNet⁃16、GoogLeNet、ResNet⁃18、DenseNet⁃37的探汽准确率分别为0.9970、0.9980、0.9942、0.9898、0.9970,综合考虑选用DenseNet⁃37做模型评估,测试集测试的精确率为0.9970,召回率为0.9970,F1分数为0.9969,表示该模型性能表现好,故能满足探汽上甑要求。 展开更多
关键词 探汽方法 红外图像 图像预处理 卷积神经网络 模型评估
在线阅读 下载PDF
基于卷积神经网络模型的遥感图像分类 被引量:27
17
作者 付秀丽 黎玲萍 +4 位作者 毛克彪 谭雪兰 李建军 孙旭 左志远 《高技术通讯》 北大核心 2017年第3期203-212,共10页
研究了遥感图像的分类,针对遥感图像的支持向量机(SVM)等浅层结构分类模型特征提取困难、分类精度不理想等问题,设计了一种卷积神经网络(CNN)模型,该模型包含输入层、卷积层、全连接层以及输出层,采用Soft Max分类器进行分类。选取2010... 研究了遥感图像的分类,针对遥感图像的支持向量机(SVM)等浅层结构分类模型特征提取困难、分类精度不理想等问题,设计了一种卷积神经网络(CNN)模型,该模型包含输入层、卷积层、全连接层以及输出层,采用Soft Max分类器进行分类。选取2010年6月6日Landsat TM5富锦市遥感图像为数据源进行了分类实验,实验表明该模型采用多层卷积池化层能够有效地提取非线性、不变的地物特征,有利于图像分类和目标检测。针对所选取的影像,该模型分类精度达到94.57%,比支持向量机分类精度提高了5%,在遥感图像分类中具有更大的优势。 展开更多
关键词 卷积神经网络(CNN) 模型 支持向量机(SVM) 特征提取 遥感图像分类
在线阅读 下载PDF
基于神经网络的人脸识别模型研究 被引量:2
18
作者 王东 《科技创新与应用》 2024年第22期5-8,13,共5页
生物识别技术常被用于网络安全领域以认证和授权访问为目的的身份识别过程中,用户提供的生物特征数据由数据安全系统采用的协议进行处理和转换,再与已提交和被认证的授权用户生物特征数据进行比对。比对的结果决定是否授予和授予该用户... 生物识别技术常被用于网络安全领域以认证和授权访问为目的的身份识别过程中,用户提供的生物特征数据由数据安全系统采用的协议进行处理和转换,再与已提交和被认证的授权用户生物特征数据进行比对。比对的结果决定是否授予和授予该用户何等访问权限。在信息安全领域,生物特征识别方式是一个成熟和有效的安全验证机制,错误率低。近些年,网络安全面临着严峻形势,各信息安全认证系统中预存储的生物特征图像面临着被盗取并被入侵者滥用的风险。由此,该文提出一种不涉及修改存储用户生物特征图像的安全加固的存储系统,该系统将提交的生物特征图像生成用于认证和访问授权的无规律密码。为确保生物特征提取的准确性,该研究还引入深度学习模型将生物特征图像转换成二进制字符串形式存储。该研究通过实验计算得出一阶和二阶错误概率。实验结果表明,该文提出的加密系统不但实现可靠提取图像中生物特征的功能,还能保证生成的二进制字符串的高安全性和识别准确度。 展开更多
关键词 面部图像 深度学习模型 卷积神经网络 特征提取 生物识别
在线阅读 下载PDF
基于卷积神经网络的刨花定向角度自动测量方法构建 被引量:1
19
作者 洪吾俊 李万兆 +1 位作者 胡尧琼 梅长彤 《木材科学与技术》 北大核心 2024年第1期58-65,共8页
基于卷积神经网络YOLOv5和最小外接矩形算法,构建一种自动准确地采集铺装刨花定向角度的方法。结果表明,构建的YOLOv5模型识别刨花目标的准确率、召回率和F1值分别为0.992、0.897和0.94,能够有效识别层叠刨花。模型自动测量和人工测量... 基于卷积神经网络YOLOv5和最小外接矩形算法,构建一种自动准确地采集铺装刨花定向角度的方法。结果表明,构建的YOLOv5模型识别刨花目标的准确率、召回率和F1值分别为0.992、0.897和0.94,能够有效识别层叠刨花。模型自动测量和人工测量的刨花定向角度具有强相关性(R2=0.99),且模型不存在算法缺陷,计算每张刨花铺装图像(像素640×640)用时仅134.7 ms。该刨花定向角度计算模型可以为工业领域优化OSB生产工艺以及提高产品性能提供技术支撑。 展开更多
关键词 定向刨花板 卷积神经网络 刨花识别 定向角度计算 模型性能评价
在线阅读 下载PDF
基于轻量化卷积神经网络的蜂窝流量低复杂度预测方法
20
作者 郑淞之 张兴 +2 位作者 张妍 王兴瑜 袁国翔 《无线电通信技术》 北大核心 2024年第5期921-931,共11页
随着蜂窝网络数据流量需求的高速增长,对于未来时刻蜂窝流量情况的精准预测,可以帮助改善网络资源分配、实现流量负载均衡,并部署基站节能与休眠策略。基于轻量化线性瓶颈结构,提出了一个具有多个并列分支结构的空时预测模型,分别提取... 随着蜂窝网络数据流量需求的高速增长,对于未来时刻蜂窝流量情况的精准预测,可以帮助改善网络资源分配、实现流量负载均衡,并部署基站节能与休眠策略。基于轻量化线性瓶颈结构,提出了一个具有多个并列分支结构的空时预测模型,分别提取近期历史数据和周期性历史数据中的空时特征。对于网格化空时数据中的空间依赖性,额外通过K-Means算法对网格高维特征进行聚类,并提取网格基站密度信息作为跨域特征输入到模型中,实现了使用低复杂度、低算力需求模型对研究范围全域流量的精准预测。 展开更多
关键词 空时流量预测 轻量化模型 卷积神经网络 深度学习 蜂窝网络
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部