The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microsc...The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.展开更多
The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite ...The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.展开更多
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金Project(51108463) supported by the National Natural Science Foundation of ChinaProject(11B041) supported by Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(NCET-10-0839) supported by Ministry Education of China
文摘The railway tunnel concrete lining exposed to sulfate-bearing groundwater beyond 40 years in southwest of China was investigated. Field investigation, sulfate ions content and corroded products analysis, macro/microscopic test were carried out. Results show that under the tunnel concrete lining structure and its served environmental conditions, sulfate solutions permeate concrete lining and accumulate on windward-side of concrete lining, resulting in the increase of sulfate ions content on windward-side and the diffusion of sulfate ions from windward-side to waterward-side, which cause the concrete lining of windward-side damaged seriously but the waterward-side of concrete lining is still in perfect condition. It is confirmed that structural characteristic of tunnel and environmental conditions lead to physical attack with the leaching of concrete and sodium sulfate crystallization as well as chemical corrosion with formation of gypsum in high sulfate concentration and formation of thaumasite in proper temperature rather than formation of ettringite. These achievements can provide academic and technical supports for understanding the deterioration mechanism of concrete lining as well as constructing railway tunnel under sulfate attack.
文摘The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.