催化裂化汽油在精制改质过程中通常存在一定幅度的辛烷值损失。以国内某石化企业1.2 Mt a S Zorb装置多年数据为基础,使用灰色关联分析和SPSS方法从包括原料油性质、吸附剂性质、产品性质和操作变量在内的368个变量中筛选出22个建模变...催化裂化汽油在精制改质过程中通常存在一定幅度的辛烷值损失。以国内某石化企业1.2 Mt a S Zorb装置多年数据为基础,使用灰色关联分析和SPSS方法从包括原料油性质、吸附剂性质、产品性质和操作变量在内的368个变量中筛选出22个建模变量。在通过模糊C均值聚类算法将原料油分为3类的基础上,分别建立了结构为21-20-1,21-18-1,21-17-1的预测产品研究法辛烷值(RON)的BP神经网络模型。结果表明,所建立的3种模型预测效果良好。将所建立的RON预测模型与遗传算法相结合,在保证汽油脱硫效果的前提下,可以明显降低产品汽油RON损失,对实际工业生产具有参考作用。展开更多
针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel...针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel Principal Component Analysis,KPCA-FCM)和模拟退火自适应遗传算法(Simulated Annealing adaptive Genetic Algorithm,SAGA)优化RBF神经网络的无线室内定位算法。首先利用KPCA对原始训练数据样本进行数据预处理,再通过KPCA-FCM算法计算出最优聚类数目和聚类中心点;其次将聚类数目和聚类中心点作为隐含层神经元个数和中心值,创建RBF神经网络,并将其网络参数映射到SAGA算法中;再次由SAGA算法进行网络参数寻优,把最优的解映射回RBF神经网络;最后利用样本数据对RBF神经网络进行训练和测试,完成建立RBF神经网络算法模型。实验表明,在相同的环境中,所提算法比传统RBF神经网络定位精度提高了48.41%。展开更多
文摘催化裂化汽油在精制改质过程中通常存在一定幅度的辛烷值损失。以国内某石化企业1.2 Mt a S Zorb装置多年数据为基础,使用灰色关联分析和SPSS方法从包括原料油性质、吸附剂性质、产品性质和操作变量在内的368个变量中筛选出22个建模变量。在通过模糊C均值聚类算法将原料油分为3类的基础上,分别建立了结构为21-20-1,21-18-1,21-17-1的预测产品研究法辛烷值(RON)的BP神经网络模型。结果表明,所建立的3种模型预测效果良好。将所建立的RON预测模型与遗传算法相结合,在保证汽油脱硫效果的前提下,可以明显降低产品汽油RON损失,对实际工业生产具有参考作用。