期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于广义神经网络与模糊聚类的变压器故障诊断 被引量:17
1
作者 张宇航 兰生 《高压电器》 CAS CSCD 北大核心 2016年第5期116-120,125,共6页
鉴于IEC三比值法在变压器故障诊断中,存在编码缺失和编码边界过于绝对等缺陷,提出了基于广义回归神经网络(GRNN)和模糊C-均值聚类算法(FCM)的变压器故障诊断方法,建立了GRNN-FCM联合变压器故障诊断模型。选取变压器油中5种特征气体体积... 鉴于IEC三比值法在变压器故障诊断中,存在编码缺失和编码边界过于绝对等缺陷,提出了基于广义回归神经网络(GRNN)和模糊C-均值聚类算法(FCM)的变压器故障诊断方法,建立了GRNN-FCM联合变压器故障诊断模型。选取变压器油中5种特征气体体积分数及其三比值编码作为输入特征向量,利用GRNN模型对样本故障进行初步判断(正常、过热、放电、放电兼过热),再采用模糊C-均值聚类算法对样本故障作进一步判断,最终得到具体的故障类型。将该模型与其他几种故障诊断方法进行对比分析,仿真实验结果表明,GRNN-FCM联合变压器故障诊断模型输出值与实际值具有较好一致性且准确度更高,验证了该模型的可行性及实用性。 展开更多
关键词 电力变压器 IEc三比值法 广义回归神经网络 模糊c-均值算法 故障诊断
在线阅读 下载PDF
广义回归神经网络在空间数据聚类中的应用 被引量:3
2
作者 卢建青 陈银珠 +1 位作者 刘玉珠 张锦 《导航定位学报》 CSCD 2020年第2期31-35,共5页
针对空间数据聚类中由于空间数据本身的特点造成模糊C均值聚类算法无法满足使用要求的问题,提出1种改进的空间数据聚类算法:将模糊C均值聚类算法与广义回归神经网络相结合,得到结合广义神经网络的模糊C均值聚类算法;并将结合广义神经网... 针对空间数据聚类中由于空间数据本身的特点造成模糊C均值聚类算法无法满足使用要求的问题,提出1种改进的空间数据聚类算法:将模糊C均值聚类算法与广义回归神经网络相结合,得到结合广义神经网络的模糊C均值聚类算法;并将结合广义神经网络的模糊C均值聚类算法应用到空间数据的聚类中。实验结果表明,结合广义神经网络的模糊C均值算法在空间聚类方面比模糊C均值有着更好的效果,可以满足实际空间数据聚类的要求。 展开更多
关键词 空间数据 空间 模糊c均值算法 结合广义神经网络的模糊c均值聚类算法 效果
在线阅读 下载PDF
一种密度聚类模糊神经网络的建模方法 被引量:3
3
作者 满春涛 曹永成 张礼勇 《电机与控制学报》 EI CSCD 北大核心 2008年第4期455-458,共4页
针对仅依赖于输入输出样本数据的复杂系统建模问题,借鉴模式识别聚类分析的理论思想,提出了基于密度聚类提取样本数据模糊规则的理论和方法,通过密度聚类法提取样本数据输入输出变量间的内在规则,并根据密度聚类提取规则的特点,建立了... 针对仅依赖于输入输出样本数据的复杂系统建模问题,借鉴模式识别聚类分析的理论思想,提出了基于密度聚类提取样本数据模糊规则的理论和方法,通过密度聚类法提取样本数据输入输出变量间的内在规则,并根据密度聚类提取规则的特点,建立了基于密度聚类的模糊逻辑推理方法,确立了一种基于密度聚类的模糊神经网络(DFNN)模型结构。以石化过氧化氢异丙苯(CHP)分解反应过程为对象,进行了仿真建模比较分析,结果表明在模型精度和可靠性上,均优于基于C均值聚类提取规则的模糊神经网络(CFNN),验证了DFNN建模方法的有效性。 展开更多
关键词 模糊神经网络 模糊推理 密度 c均值算法 cHP分解过程建模
在线阅读 下载PDF
基于平滑因子引入和神经网络优化的锂电池SOC估计方法
4
作者 付炳喆 李沂洹 +1 位作者 王玮 李慷 《电源技术》 CAS 北大核心 2024年第1期143-149,共7页
为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核... 为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核函数宽度及连接权值进行优化,解决了RBF神经网络结构和初始参数难以确定的问题。将滑动时间窗口内的放电容量作为平滑因子引入神经网络模型,增强了RBF网络对锂离子电池非线性特性拟合的能力。基于实验获得的锂离子电池在联邦城市行车计划(FUDS)工况下的数据,对所提出的方法进行仿真和验证,结果表明,所提方法显著提升了锂电池SOC的估计精度。 展开更多
关键词 电池荷电状态 径向基神经网络 遗传算法 模糊c均值 黄金分割优选法
在线阅读 下载PDF
基于模糊自组织神经网络的多目标跟踪算法 被引量:3
5
作者 林岚 邱晓红 《江西师范大学学报(自然科学版)》 CAS 北大核心 2005年第1期26-30,共5页
分析了多目标跟踪问题的数据关联算法复杂性,研究了基于模糊C均值聚类算法的模糊自组织神经网络的特性及其在多目标跟踪中的应用,提出了将FKCN算法、自组织神经网络与数据关联、滤波相结合的跟踪算法.仿真结果表明本算法能在多目标环境... 分析了多目标跟踪问题的数据关联算法复杂性,研究了基于模糊C均值聚类算法的模糊自组织神经网络的特性及其在多目标跟踪中的应用,提出了将FKCN算法、自组织神经网络与数据关联、滤波相结合的跟踪算法.仿真结果表明本算法能在多目标环境下取得较好的跟踪效果. 展开更多
关键词 自组织神经网络 多目标跟踪算法 算法复杂性 仿真结果 模糊c均值 数据关联 滤波 结合
在线阅读 下载PDF
基于模糊神经网络的A^2/O工艺出水氨氮在线预测模型 被引量:15
6
作者 胡康 万金泉 +2 位作者 马邕文 黄明智 王艳 《中国环境科学》 EI CAS CSCD 北大核心 2012年第2期260-267,共8页
采用厌氧/缺氧/好氧污水处理系统(A2/O)对人工合成污水进行处理,并利用人工神经网络(ANN)模型和自适应模糊人工神经网络(ANFIS)模型对A2/O处理污水的过程进行仿真模拟.在MATLAB环境下,选取可在线监测的水力停留时间(HRT)、进水pH值(pH)... 采用厌氧/缺氧/好氧污水处理系统(A2/O)对人工合成污水进行处理,并利用人工神经网络(ANN)模型和自适应模糊人工神经网络(ANFIS)模型对A2/O处理污水的过程进行仿真模拟.在MATLAB环境下,选取可在线监测的水力停留时间(HRT)、进水pH值(pH)、好氧池溶解氧(DO)和混合液回流比(r)作为输入参量,系统出水氨氮浓度(NH4+eff)为输出量,建立在线预测模型.结合自适应模糊C均值聚类算法,确定ANFIS模型的模糊规则数及最优运行参数,对实验数据进行仿真预测.结果表明,与ANN模型相比,ANFIS模型的仿真输出值与实际值的拟合程度更高,相对误差在6.45%之内,平均绝对百分比误差(MAPE)为2.8%,均方根误差(RMSE)为0.1209,相关系数(R)达0.9956.模型训练过程中所得到的三维曲面图,可直观的反映各因素与出水氨氮浓度之间的非线性函数关系,为A2/O系统的高效稳定运行提供指导. 展开更多
关键词 自适应模糊人工神经网络 自适应模糊c均值算法 污水处理 氨氮去除 厌氧/缺氧/好氧污水处理系统
在线阅读 下载PDF
带容量约束的多车调度暂态混沌神经网络算法 被引量:4
7
作者 孙华丽 谢剑英 薛耀锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第7期1148-1151,共4页
带容量约束的多车调度问题是典型的NP-hard问题,利用模糊C均值聚类算法的相似性分类原理及混沌神经网络的全局搜索能力和高搜索效率,提出了一种快速且易于实现的新的混合启发式算法.该算法分为用模糊C均值聚类算法将所有客户按车容量要... 带容量约束的多车调度问题是典型的NP-hard问题,利用模糊C均值聚类算法的相似性分类原理及混沌神经网络的全局搜索能力和高搜索效率,提出了一种快速且易于实现的新的混合启发式算法.该算法分为用模糊C均值聚类算法将所有客户按车容量要求装车和用暂态混沌神经网络方法对每条路线排序两个阶段.实例计算以及与其他算法比较表明,该算法是一种求解多车调度问题的可行且高效的方法. 展开更多
关键词 车辆调度 模糊c均值 暂态混沌神经网络 混合优化算法
在线阅读 下载PDF
基于自适应模糊神经网络的机器人焊接焊缝外形预测方法 被引量:7
8
作者 陶永 兰江波 +4 位作者 任帆 王田苗 江山 高赫 温宇方 《计算机集成制造系统》 EI CSCD 北大核心 2022年第11期3643-3651,共9页
为提高机器人焊接焊缝外形预测的准确性,提出一种基于直觉模糊C均值聚类和自适应惯性权重粒子群算法(IFCM-APSO)相融合的模糊神经网络焊缝外形预测方法。该方法以T型焊缝的焊脚宽度和焊高高度作为评价标准,选择影响焊接质量的焊接速率... 为提高机器人焊接焊缝外形预测的准确性,提出一种基于直觉模糊C均值聚类和自适应惯性权重粒子群算法(IFCM-APSO)相融合的模糊神经网络焊缝外形预测方法。该方法以T型焊缝的焊脚宽度和焊高高度作为评价标准,选择影响焊接质量的焊接速率、激光功率、送丝速率和保护气体流量这4种变量作为输入参数,对自适应模糊神经网络中隶属函数的中心值和宽度进行优化,以保证机器人焊接的输入和输出参数具有较好的拟合性。最后,经过仿真和实验表明,所提出焊缝外形预测方法能较好地对机器人焊接的输入和输出参数进行非线性拟合,提高了其全局搜索能力和收敛速度,解决了传统模糊神经网络训练过程中容易陷入局部极小点的问题。 展开更多
关键词 直觉模糊c均值 惯性权重粒子群算法 自适应模糊神经网络 机器人焊接 焊缝外形预测
在线阅读 下载PDF
基于BP神经网络和遗传算法优化S Zorb装置汽油辛烷值损失 被引量:10
9
作者 高萍 刘松 +2 位作者 程顺 欧阳福生 赵明洋 《石油炼制与化工》 CAS CSCD 北大核心 2021年第7期88-95,共8页
催化裂化汽油在精制改质过程中通常存在一定幅度的辛烷值损失。以国内某石化企业1.2 Mt a S Zorb装置多年数据为基础,使用灰色关联分析和SPSS方法从包括原料油性质、吸附剂性质、产品性质和操作变量在内的368个变量中筛选出22个建模变... 催化裂化汽油在精制改质过程中通常存在一定幅度的辛烷值损失。以国内某石化企业1.2 Mt a S Zorb装置多年数据为基础,使用灰色关联分析和SPSS方法从包括原料油性质、吸附剂性质、产品性质和操作变量在内的368个变量中筛选出22个建模变量。在通过模糊C均值聚类算法将原料油分为3类的基础上,分别建立了结构为21-20-1,21-18-1,21-17-1的预测产品研究法辛烷值(RON)的BP神经网络模型。结果表明,所建立的3种模型预测效果良好。将所建立的RON预测模型与遗传算法相结合,在保证汽油脱硫效果的前提下,可以明显降低产品汽油RON损失,对实际工业生产具有参考作用。 展开更多
关键词 S Zorb工艺 辛烷值损失 BP神经网络 模糊c均值算法 遗传算法
在线阅读 下载PDF
一种改进的神经网络集成法预测PMV指标 被引量:5
10
作者 徐远清 陈祥光 +1 位作者 王丽 张启鸿 《北京理工大学学报》 EI CAS CSCD 北大核心 2007年第2期143-147,共5页
为解决大样本的PMV指标预测问题,采用基于模糊聚类的神经网络集成方法,将原始样本集模糊划分为多个相交子集,通过这些模糊子集训练神经网络得到预测个体,再对个体输出加权结合获得预测结果.在进行神经网络集成过程中,采用微粒群算法有... 为解决大样本的PMV指标预测问题,采用基于模糊聚类的神经网络集成方法,将原始样本集模糊划分为多个相交子集,通过这些模糊子集训练神经网络得到预测个体,再对个体输出加权结合获得预测结果.在进行神经网络集成过程中,采用微粒群算法有效克服了聚类和常规神经网络训练容易陷入局部最优的缺点,总结出一种更加有效的神经网络集成方法.实验结果表明:基于微粒群的神经网络集成算法有较好的全局优化性能,其集成的神经网络系统能更准确地预测PMV指标. 展开更多
关键词 模糊c均值 神经网络集成 微粒群算法 PMV指标
在线阅读 下载PDF
基于优化RBF神经网络的无线室内定位 被引量:10
11
作者 刘夏 莫树培 +1 位作者 何惠玲 杨军 《电讯技术》 北大核心 2019年第11期1261-1267,共7页
针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel... 针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel Principal Component Analysis,KPCA-FCM)和模拟退火自适应遗传算法(Simulated Annealing adaptive Genetic Algorithm,SAGA)优化RBF神经网络的无线室内定位算法。首先利用KPCA对原始训练数据样本进行数据预处理,再通过KPCA-FCM算法计算出最优聚类数目和聚类中心点;其次将聚类数目和聚类中心点作为隐含层神经元个数和中心值,创建RBF神经网络,并将其网络参数映射到SAGA算法中;再次由SAGA算法进行网络参数寻优,把最优的解映射回RBF神经网络;最后利用样本数据对RBF神经网络进行训练和测试,完成建立RBF神经网络算法模型。实验表明,在相同的环境中,所提算法比传统RBF神经网络定位精度提高了48.41%。 展开更多
关键词 室内无线定位 RBF神经网络 核主成分分析 模糊c均值 模拟退火自适应遗传算法
在线阅读 下载PDF
基于MEA-NARX神经网络主轴热误差建模 被引量:1
12
作者 孙昂 王丽爽 谢新连 《机床与液压》 北大核心 2022年第24期49-53,共5页
为了有效提高基于非线性时间序列的热误差预测模型精度,利用F统计检验确定模糊C均值聚类的聚类数目,结合不同量纲一化处理的灰色关联分析排序筛选出关键温度测点,建立基于NARX神经网络的热误差预测模型,通过设置输入延时阶数、输出延时... 为了有效提高基于非线性时间序列的热误差预测模型精度,利用F统计检验确定模糊C均值聚类的聚类数目,结合不同量纲一化处理的灰色关联分析排序筛选出关键温度测点,建立基于NARX神经网络的热误差预测模型,通过设置输入延时阶数、输出延时阶数和隐含层神经元个数的范围,利用思维进化算法对输入、输出延时阶数和隐含层神经元个数进行寻优,与随机选取参数的NARX神经网络预测模型相比,模型预测精度提高了36.98%。 展开更多
关键词 主轴热误差建模 模糊c均值 思维进化算法 NARX神经网络
在线阅读 下载PDF
基于聚类分析的复杂网络中的社团探测 被引量:16
13
作者 刘婷 胡宝清 《复杂系统与复杂性科学》 EI CSCD 2007年第1期28-35,共8页
社团结构是复杂网络中普遍存在的一种特征。本文应用改进了的谱分法将网络的社团探测问题转换为聚类分析问题,并将Girvan和Newman提出的模块度函数概念应用到聚类分析的4类算法中进行社团结构的探测,特别提出了一种新的结合模块度的聚... 社团结构是复杂网络中普遍存在的一种特征。本文应用改进了的谱分法将网络的社团探测问题转换为聚类分析问题,并将Girvan和Newman提出的模块度函数概念应用到聚类分析的4类算法中进行社团结构的探测,特别提出了一种新的结合模块度的聚类遗传算法。然后用3种类型的网络实验算例验证了本文算法的有效性,并对实验结果进行了比较分析,得出本文提出的新算法在初始化敏感性和准确性方面效果较好。最后指出本文算法的进一步研究方向。 展开更多
关键词 社团结构 谱分法 模块度 k- MEANS算法 模糊c均值 遗传算法神经网络
在线阅读 下载PDF
逆向工程中点云孔洞修补技术研究 被引量:5
14
作者 王春香 孟宏 +1 位作者 张勇 张文敬 《机械科学与技术》 CSCD 北大核心 2018年第5期729-735,共7页
对于散乱点云模型上的大面积、跨面孔洞,逆向软件往往难以修补。为了提高孔洞修补精度、获得完整的点云模型,提出了对手受惩罚竞争学习算法(Rival penalized competitive learning,RPCL)和模糊C均值聚类算法(Fuzzy C-means,FCM)相结合... 对于散乱点云模型上的大面积、跨面孔洞,逆向软件往往难以修补。为了提高孔洞修补精度、获得完整的点云模型,提出了对手受惩罚竞争学习算法(Rival penalized competitive learning,RPCL)和模糊C均值聚类算法(Fuzzy C-means,FCM)相结合的综合改进径向基函数神经网络(RBF)算法,建立了基于改进算法的点云孔洞修补模型,并以挖掘机斗齿和汽车模型为研究对象,利用RPCL-FCM-RBF联合算法对不同特征的点云孔洞进行了修补研究。结果表明,该算法在很大程度上提高了点云孔洞的修补精度,其补洞效果远优于逆向软件。而且,较之传统的RBF神经网络,该方法所建模型具有更高的预测精度、能够有效地调整洞口缺失数据、实现点云孔洞的精确修复,实用性强。 展开更多
关键词 径向基函数神经网络(RBF) 对手受惩罚竞争学习算法(RPcL) 模糊c均值算法(FcM) 孔洞修补 MATLAB
在线阅读 下载PDF
改进的RBFNN在运动员竞技状态预测中的应用 被引量:4
15
作者 张乐 魏振钢 +1 位作者 姚晓晓 杨红云 《计算机工程与应用》 CSCD 北大核心 2008年第9期217-219,共3页
提出了一种改进的径向基函数(RBF)神经网络,该神经网络以模糊系统模型为基础。首先利用减法聚类算法确定径向基函数的中心数,然后通过模糊C均值聚类算法优化基函数中心与宽度,最后依据样本数据的聚类结果设计RBF神经网络并进行训练。将... 提出了一种改进的径向基函数(RBF)神经网络,该神经网络以模糊系统模型为基础。首先利用减法聚类算法确定径向基函数的中心数,然后通过模糊C均值聚类算法优化基函数中心与宽度,最后依据样本数据的聚类结果设计RBF神经网络并进行训练。将该神经网络应用于网球队运动员的竞技状态的预测。仿真结果表明:该算法先进有效、具有较高的精度,用其建立的模型具有较强的实用性。 展开更多
关键词 径向基神经网络(RBFNN) 算法 模糊c均值算法 竞技状态 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部