期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EMD-PSO-BP模型的短期潮流流速预测 被引量:1
1
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子优化算法 本征模函数
在线阅读 下载PDF
基于EMD-GA-BP与EMD-PSO-LSSVM的中国碳市场价格预测 被引量:57
2
作者 崔焕影 窦祥胜 《运筹与管理》 CSSCI CSCD 北大核心 2018年第7期133-143,共11页
由于碳交易市场价格的波动性大及相互影响关系的复杂性,本文试图构建碳价格长期和短期的最优预测模型。考虑到碳交易价格波动的趋势性和周期性特点,基于经验模态分解算法(EMD)、遗传算法(GA)—神经网络(BP)模型、粒子群算法(PSO)—最小... 由于碳交易市场价格的波动性大及相互影响关系的复杂性,本文试图构建碳价格长期和短期的最优预测模型。考虑到碳交易价格波动的趋势性和周期性特点,基于经验模态分解算法(EMD)、遗传算法(GA)—神经网络(BP)模型、粒子群算法(PSO)—最小二乘支持向量机(LSSVM)模型及由它们构建的组合预测模型,对中国碳市场交易价格进行短期预测和长期预测。实证分析中将影响碳交易价格的不同宏观经济因素和碳价格时间序列因素做为输入变量,分别代入组合模型进行预测。研究结果表明,在短期预测中,EMD-GA-BP模型预测效果优于GABP模型和PSO-LSSVM模型;而在长期预测中,组合模型EMD-PSO-LSSVM模型预测效果优于只考虑碳价格波动趋势性或周期性预测效果。 展开更多
关键词 碳价格预测 经验模态分解算法 遗传算法神经网络 粒子算法-最小二乘支持向量机 宏观经济因素
在线阅读 下载PDF
基于关联监测点数据的非线性变形预测模型 被引量:10
3
作者 李柏佚 王桂林 袁军 《振动与冲击》 EI CSCD 北大核心 2021年第8期124-130,共7页
基坑边坡变形具有非平稳性、非线性等特点,且现有的变形预测模型常用单个监测点或整体监测点的数据进行预测,忽略了不同监测点之间的关联性。以重庆某深基坑边坡为例,分别研究基于单个监测点数据和基于关联监测点数据的经验模态分解-粒... 基坑边坡变形具有非平稳性、非线性等特点,且现有的变形预测模型常用单个监测点或整体监测点的数据进行预测,忽略了不同监测点之间的关联性。以重庆某深基坑边坡为例,分别研究基于单个监测点数据和基于关联监测点数据的经验模态分解-粒子群优化算法-BP神经网络(EMD-PSO-BPNN)模型、PSO-BPNN模型、BP神经网络模型的预测结果,并对比了基于整体监测点中非关联多点数据的预测结果。结果表明:EMD模型降低了基坑边坡变形数据非平稳性,使得各分量变化曲线比原监测数据的曲线更光滑和平稳,提高了预测精度;EMD-PSO-BPNN模型具有较好的非线性映射能力、学习能力和自适应能力,预测精度优于其他模型;同种模型下,基于关联点的预测模型预测精度明显高于单个监测点的预测模型。 展开更多
关键词 经验模态分解-粒子优化算法-bp神经网络(emd-pso-bpnn) 关联监测点 深基坑 变形预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部