Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms...Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study...Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.展开更多
基金supported by the National Natural Science Foundation of China(71991464,71921001)Fundamental Research Funds for the Central Universities,General Program(WK2040000053)Key Program(YD2040002027)。
文摘Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
基金Projects(2007JT3018, 2008JT1013, 2009FJ4056) supported by the Key Project in Hunan Science and Technology Program, ChinaProject(20090161120014) supported by the New Teachers Sustentation Fund in Doctoral Program, Ministry of Education, China
文摘Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.