期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DenseNet的经典-量子混合分类模型 被引量:1
1
作者 翟飞宇 马汉达 《计算机应用》 CSCD 北大核心 2024年第6期1905-1910,共6页
现有的图像分类模型越来越复杂,计算时所需的硬件资源和计算时间不断增加。针对该问题提出一种基于DenseNet的经典-量子混合分类模型(CQDenseNet模型)。首先,使用一个可在噪声中尺度量子(NISQ)设备上运行的变分量子电路(VQC)作为分类器... 现有的图像分类模型越来越复杂,计算时所需的硬件资源和计算时间不断增加。针对该问题提出一种基于DenseNet的经典-量子混合分类模型(CQDenseNet模型)。首先,使用一个可在噪声中尺度量子(NISQ)设备上运行的变分量子电路(VQC)作为分类器,替换DenseNet全连接层;其次,使用迁移学习,利用在ImageNet数据集上预先训练好的DenseNet模型作为CQDenseNet的预训练模型;最后,将CQDenseNet模型在中草药分类数据集和CIFAR-100数据集上与基准模型AlexNet、GoogLeNet、VGG19、ResNet和DenseNet-169进行对比。实验结果表明,CQDenseNet模型比所有基准模型中表现最好的基准模型:准确率分别提高了2.2、7.4个百分点,精确率分别提高了2.2、7.3个百分点,召回率分别提高了2.2、7.1个百分点,F1值分别提高了2.3、6.4个百分点,说明了经典-量子混合模型的性能优于经典模型。 展开更多
关键词 DenseNet 经典-量子混合模型 图像分类 迁移学习 变分量子电路
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部