期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
结合上下文的细粒度实体分类特征表示方法
1
作者 刘盼 郭延明 +3 位作者 雷军 王昊冉 老松杨 李国辉 《计算机工程与科学》 CSCD 北大核心 2024年第5期929-936,共8页
细粒度实体分类任务赋予文本中的实体以细粒度类别,能够通过类别信息为实体提供丰富的语义信息,在关系抽取、实体链接和问答系统等下游任务中发挥重要作用。由于实体在句子中的长度和位置是不统一的,无法直接计算实体在上下文中的表示,... 细粒度实体分类任务赋予文本中的实体以细粒度类别,能够通过类别信息为实体提供丰富的语义信息,在关系抽取、实体链接和问答系统等下游任务中发挥重要作用。由于实体在句子中的长度和位置是不统一的,无法直接计算实体在上下文中的表示,现有的细粒度实体分类方法将实体提及与其上下文分别进行处理和特征表示,割裂了实体与其上下文之间的语义关联。提出一种结合上下文的实体分类特征表示方法,将实体放回上下文,并解决了实体长度和位置不统一的情况下,实体特征表示的计算问题。实验结果表明,采用结合上下文的实体特征表示方法提取实体在上下文中的特征表示,能够大幅提升细粒度实体分类的性能,该方法在中文细粒度实体分类数据集CFET上的Macro-F1较原文普遍提高了10%以上。 展开更多
关键词 细粒度实体分类 上下文 特征表示
在线阅读 下载PDF
基于迁移学习的细粒度实体分类方法的研究 被引量:11
2
作者 冯建周 马祥聪 《自动化学报》 EI CSCD 北大核心 2020年第8期1759-1766,共8页
细粒度实体分类(Fine-grained entity type classification,FETC)旨在将文本中出现的实体映射到层次化的细分实体类别中.近年来,采用深度神经网络实现实体分类取得了很大进展.但是,训练一个具备精准识别度的神经网络模型需要足够数量的... 细粒度实体分类(Fine-grained entity type classification,FETC)旨在将文本中出现的实体映射到层次化的细分实体类别中.近年来,采用深度神经网络实现实体分类取得了很大进展.但是,训练一个具备精准识别度的神经网络模型需要足够数量的标注数据,而细粒度实体分类的标注语料非常稀少,如何在没有标注语料的领域进行实体分类成为难题.针对缺少标注语料的实体分类任务,本文提出了一种基于迁移学习的细粒度实体分类方法,首先通过构建一个映射关系模型挖掘有标注语料的实体类别与无标注语料实体类别间的语义关系,对无标注语料的每个实体类别,构建其对应的有标注语料的类别映射集合.然后,构建双向长短期记忆(Bidirectional long short term memory,BiLSTM)模型,将代表映射类别集的句子向量组合作为模型的输入用来训练无标注实体类别.基于映射类别集中不同类别与对应的无标注类别的语义距离构建注意力机制,从而实现实体分类器以识别未知实体分类.实验证明,我们的方法取得了较好的效果,达到了在无任何标注语料前提下识别未知命名实体分类的目的. 展开更多
关键词 细粒度实体分类 迁移学习 双向长短期记忆模型 注意力 机制
在线阅读 下载PDF
基于层次结构感知的细粒度实体分类方法
3
作者 谢斌红 李书宁 张英俊 《计算机应用》 CSCD 北大核心 2022年第10期3003-3010,共8页
针对现有细粒度实体分类(FGET)任务的工作多着眼于如何更好地编码实体和上下文的语义信息,而忽略了标签层次结构中标签之间的依赖关系及其本身的语义信息的问题,提出了一种基于层次结构感知的细粒度实体分类(HAFGET)方法。首先,利用基... 针对现有细粒度实体分类(FGET)任务的工作多着眼于如何更好地编码实体和上下文的语义信息,而忽略了标签层次结构中标签之间的依赖关系及其本身的语义信息的问题,提出了一种基于层次结构感知的细粒度实体分类(HAFGET)方法。首先,利用基于图卷积网络(GCN)的层次结构编码器对不同层级标签之间的依赖关系进行建模,提出了基于层次结构感知的细粒度实体分类多标签注意力(HAFGET-MLA)模型和基于层次结构感知的细粒度实体分类实体特征传播(HAFGET-MFP)模型;然后,利用HAFGET-MLA模型和HAFGET-MFP模型对实体上下文特征进行层次结构感知和分类,前者通过层次编码器学习层次结构感知标签嵌入,并与实体特征通过注意力融合后进行标签分类,后者则直接将实体特征输入到层次结构编码器更新特征表示后进行分类。在FIGER、OntoNotes和KNET三个公开数据集上的实验结果表明,与基线模型相比,HAFGET-MLA模型和HAFGET-MFP模型的准确率和宏平均F1值均提升了2%以上,验证了所提方法能够有效提升分类效果。 展开更多
关键词 细粒度实体分类 图卷积网络 注意力机制 条件概率 层次结构编码器
在线阅读 下载PDF
融合记忆网络的细粒度实体分类方法
4
作者 周祺 陶皖 +1 位作者 孔超 崔佰婷 《计算机科学与探索》 CSCD 北大核心 2022年第11期2565-2574,共10页
细粒度实体分类是在给定实体指称后要求为其分配细粒度类型标签的任务。大多数细粒度实体分类采用远程监督的方法,为实体指称分配知识库中实体所对应的全部类型标签,这会引入无关或具体的噪声标签。在远程监督中,将分配与指称上下文无... 细粒度实体分类是在给定实体指称后要求为其分配细粒度类型标签的任务。大多数细粒度实体分类采用远程监督的方法,为实体指称分配知识库中实体所对应的全部类型标签,这会引入无关或具体的噪声标签。在远程监督中,将分配与指称上下文无关的类型标签归为无关噪声标签,分配细粒度标签导致在上下文中实体含义不准确的类型标签归为具体噪声标签。为减轻噪声影响,以往采用人工标注、启发式规则剪枝等方法,但存在效率低、缩减训练集规模导致分类模型整体性能变差等问题。通过引入记忆网络,分类模型能深入学习实体指称上下文与类型标签之间的关联性,增强对相似的指称上下文所对应类型标签的记忆表示,有效减轻无关噪声标签的影响。与此同时,利用变形的层次损失函数有效学习类型标签之间的层次关系,从而缓解具体噪声标签的负面影响。此外,结合L2正则化函数防止训练模型对噪声标签的过拟合。在公开数据集上的实验结果表明,提出的方法能够有效缓解无关噪声标签和具体噪声标签对分类模型的消极影响,在准确率、MacroF1值、MicroF1值上表现均优于以往处理标签噪声的方法。 展开更多
关键词 细粒度实体分类 噪声处理 记忆网络 类型标签
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部