Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,...Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.展开更多
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
基金Project(2017YFA0206602)supported in part by the National Key Research and Development Program of China。
文摘Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance.We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT)and the interface electronic structures.The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions.On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode.The initial molecular layer at dielectric,semiconductor and conductive substrates displays slight different lattice structure.The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase.C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials.This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface.Although it is air stable,C8-BTBT is chemically reactive with some transition metals and compounds.The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential.The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.