To improve the performance and robustness in service discovery, a self-organizing mechanism for service alliances of Service Providers (SPs) is proposed in this paper. According to the similarity of service content, a...To improve the performance and robustness in service discovery, a self-organizing mechanism for service alliances of Service Providers (SPs) is proposed in this paper. According to the similarity of service content, an SP publishes its services in a partition of SPs to construct connections between highly similar SPs. These SPs constitute a self-organized distributed environment. A self-organizing protocol is designed to ensure the correctness of the construction of the alliances. The protocol consists of four stages - initiating stage, developing stage, developed stage and degradation stage. The experimental results demonstrate that this protocol ensures the self-property. The visualization of alliance developing stages illustrates that sub-alliances are sp lit in balance and self-connected. Compared with the Random Walker algorithm, the time cost and the number of forwarded messages in alliance-based mechanism is lower in service discovery. On three typical topologies (Grid, Random-Graph, Power-Law), the success rate of service discovery is much higher, which shows that self-organized alliances are helpful to enhance the discovery performance.展开更多
A homological multi-information image fusion method was introduced for recognition of the gastric tumor pathological tissue images.The main purpose is that fewer procedures are used to provide more information and the...A homological multi-information image fusion method was introduced for recognition of the gastric tumor pathological tissue images.The main purpose is that fewer procedures are used to provide more information and the result images could be easier to be understood than any other methods.First,multi-scale wavelet transform was used to extract edge feature,and then watershed morphology was used to form multi-threshold grayscale contours.The research laid emphasis upon the homological tissue image fusion based on extended Bayesian algorithm,which fusion result images of linear weighted algorithm was used to compare with the ones of extended Bayesian algorithm.The final fusion images are shown in Fig 5.The final image evaluation was made by information entropy,information correlativity and statistics methods.It is indicated that this method has more advantages for clinical application.展开更多
基金This paper was supported by the Natural Science Foundation of China under Grants No. 61170053, No. 61100205 the Nat- ural Science Foundation of Beijing under Grant No. 4112027 the Natural Science Foundation of Hebei under Grant No. F2009000929. The authors would like to thank the anony- mous reviewers for their helpful comments from which the preparation for this version of the paper has benefited.
文摘To improve the performance and robustness in service discovery, a self-organizing mechanism for service alliances of Service Providers (SPs) is proposed in this paper. According to the similarity of service content, an SP publishes its services in a partition of SPs to construct connections between highly similar SPs. These SPs constitute a self-organized distributed environment. A self-organizing protocol is designed to ensure the correctness of the construction of the alliances. The protocol consists of four stages - initiating stage, developing stage, developed stage and degradation stage. The experimental results demonstrate that this protocol ensures the self-property. The visualization of alliance developing stages illustrates that sub-alliances are sp lit in balance and self-connected. Compared with the Random Walker algorithm, the time cost and the number of forwarded messages in alliance-based mechanism is lower in service discovery. On three typical topologies (Grid, Random-Graph, Power-Law), the success rate of service discovery is much higher, which shows that self-organized alliances are helpful to enhance the discovery performance.
基金Supported by the National Science Foundation of China(No.30370403 )
文摘A homological multi-information image fusion method was introduced for recognition of the gastric tumor pathological tissue images.The main purpose is that fewer procedures are used to provide more information and the result images could be easier to be understood than any other methods.First,multi-scale wavelet transform was used to extract edge feature,and then watershed morphology was used to form multi-threshold grayscale contours.The research laid emphasis upon the homological tissue image fusion based on extended Bayesian algorithm,which fusion result images of linear weighted algorithm was used to compare with the ones of extended Bayesian algorithm.The final fusion images are shown in Fig 5.The final image evaluation was made by information entropy,information correlativity and statistics methods.It is indicated that this method has more advantages for clinical application.