期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于组稀疏残差约束的自适应强噪声图像复原算法
1
作者 高红霞 陈展鸿 +3 位作者 曾润浩 罗澜 陈安 马鸽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第8期11-18,共8页
组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和... 组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和减小组稀疏残差;基于干净图像的组稀疏系数预估和多尺度图像块匹配,提出了自适应图像复原迭代算法,以提升组稀疏学习算法的图像去噪和精细结构复原能力.实验结果表明,文中算法能更好地保留图像的细节纹理,减少过平滑和伪影现象,在强噪声图像复原的主、客观综合评价上优于BM3D、WNNM等标杆去噪算法. 展开更多
关键词 图像去噪 强噪声图像 组稀疏残差 自适应正则化算法 非局部自相似性 多尺度图像块匹配
在线阅读 下载PDF
基于预滤波的组稀疏残差约束图像去噪模型 被引量:3
2
作者 陈梦雅 李润鑫 +1 位作者 刘辉 尚振宏 《传感器与微系统》 CSCD 2020年第2期48-51,共4页
大多数现有去噪方法只考虑了噪声输入图像的非局部自相似性先验方法(NSS),仅从已退化的输入图像中收集相似图像块,图像去噪的质量在很大程度上取决于输入图像本身。针对图像复原过程中的噪声去除问题,设计了一种基于卷积神经网络的组稀... 大多数现有去噪方法只考虑了噪声输入图像的非局部自相似性先验方法(NSS),仅从已退化的输入图像中收集相似图像块,图像去噪的质量在很大程度上取决于输入图像本身。针对图像复原过程中的噪声去除问题,设计了一种基于卷积神经网络的组稀疏去噪模型。模型使用两种NSS先验(即噪声输入图像和预滤波图像的NSS先验),把图像去噪问题转化为组稀疏残差最小化问题。为了提高非局部相似块选择的准确性,使用了一种自适应块搜索的方法,并采用卷积神经网络进行预滤波,以获得对原始图像组稀疏系数的良好估计。实验结果表明:所提出的GSRC-CNN方法在客观和感知质量方面优于许多先进的去噪方法。 展开更多
关键词 卷积神经网络 自适应块搜索 组稀疏残差约束 预滤波
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部